系別: 化學工程與材料工程學系

科目:物理 化學

准帶:	項目請	打「V	 ′ 」	
V	簡單	型計	算機	
本試題共	- /	頁,	5	 大題

1. For the reaction, A (g, 1 bar) + B (g, 1 bar) \leftrightarrow 2C (g, 1 bar) + D (g, 1 bar) at 25°C.

	A (g)	В (g)	C (g)	$D_{(g)}$
$\Delta H^{o}_{f}(kJ/mole)$	-300.0	-200.0	-250.0	-100.0
ΔG^{o}_{f} (kJ/mole)	-350.0	-150.0	-200.0	-80

(ΔH°_f is the standard heat of formation at 25°C; ΔG°_f is the standard Gibbs energy of formation at 25°C)

- (a) Calculate the standard reaction enthalpy ΔHr^o (kJ/mol);
- (b) Calculate the equilibrium constant K for this reaction.
- (c) Assume a constant ΔHr° value, estimate the equilibrium constant at 100°C.
- 2. Consider the following electrochemical cell:

$$Zn_{(s)} |Zn^{2+}_{(aq)}| |Cu^{2+}_{(aq)}| Cu_{(s)}$$

Calculate: (a) the standard electromotive force.

(b) the equilibrium constant for the cell reaction.

$$\Delta G^{o}_{f} [Zn^{2+}_{(aq)}] = -147.06 \text{ kJmol}^{-1}; \qquad \Delta G^{o}_{f} [Cu^{2+}_{(aq)}] = 65.49 \text{ kJmol}^{-1}$$

- 3. Given the Margules equations: $\ln \gamma_A = \beta X_B^2$; $\ln \gamma_B = \beta X_A^2$ (X_i is the molar fraction; β is the interaction parameter) to express the activity coefficients (γ_A, γ_B) of components A and B in a regular solution,
 - (a) Derive the expression of Gibbs energy of mixing ΔG_{mix} for a regular solution formed from A and B. If 2.00 mol of A (saturated vapor pressure $P_A^* = 200$ kPa) is mixed with 3.00 mol of B (saturated vapor pressure $P_B^* = 300$ kPa) at 300 K to form a regular solution with $\beta = 2$.
 - (b) Calculate the value of activity of A, vapor pressure of A component, and ΔG_{mix} .
 - (c) Will A and B form a miscible liquid mixture or not?
- 4. The energy difference between the two quantum levels of a nucleus with I = 1/2 depends on the applied magnetic field B_o : $\Delta E = (\gamma h/2\pi)B_o$, where γ is the magnetogyric ratio (for proton, γ =2.6752 x10⁸ rad.T⁻¹.s⁻¹) and h is Planck's constant, 6.626x10⁻³⁴ J.s.
 - (a) According to the Boltzmann distribution, how many protons would be in the ground state for every 100,000 protons in the excited state under an applied magnetic field (B_o) of 4.6972 T at 293 K?
 - (b) Also, calculate the frequency of radiation (in MHz) absorbed by the proton at ground state to be exited to the excited state. (Boltzmann constant $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$)
- 5. The following data have been obtained for the decomposition of A at 350 K according to the reaction: $2A \rightarrow 4B + C$. Determine (a) the reaction order, (b) the rate constant, and (c) the half-life time.

time (min)	0	1	2	3	4
[A] (mol/L)	1.000	0.705	0.497	0.349	0.246