淡江大學八十九學年度碩士班招生考試試題

系別:化學工程學系 科目:物理化學

本試題共

- 1. (a) Explain the phenomenum of osmotic pressure and deduce the mathematical relationship between π and the activity of solvent asolvent in a certain solution. (b) How do you approximate the previous relation into $\pi = MRT$, where M is the molarity of solute in the solution. 20%
- 2. (a) Explain the two correction terms in van der Waals' equation with respect to the ideal gas equation. (b) Calculate, to a precision of 1 %, the molar volume of carbon dioxide CO_2 , given the constants of van der Waals' equation as a = 3.66 bar liter mol and a = 0.0428 liter mol a = 0.0428 liter mol a = 0.0428
- 3. Deduce the following relation

(a)
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$$
,
(b) $C_P - C_V = T\left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_P$. 20%

4. Suggest a mechanism and verify it for enzyme-catalyzed reactions as following

$$E + S \leftrightarrow E + products$$
with rate-equation as $R = \frac{k[E_{total}][S]}{K_M + [S]}$.

20%

5. Oxygen is expanded reversibly and adiabatically from a volume of 1 liter at 100 bar and 100°C, until the volume is 20 liter. The C_p of oxygen can be taken to be 29.38 J K^{-1} mol⁻¹. (a) Calculate the final pressure and temperaturre assuming ideal gas behavior. (b) Calculate ΔU therm, ΔU mech for the thermal and mechanical surrounding, and ΔU , ΔH for the oxygen gas. 20%