淡江大學99學年度碩士班招生考試試題

系別:物理學系

科目:近代物理

准帶項	目請	打「V		
X	計	算者	幾	
本試題共	1	頁,	5	大題

- 1. Cosmic Microwave Background Radiation is a form of electromagnetic radiation filling the universe. It has a thermal black body spectrum at a temperature of 2.725K. What is the wavelength of peak of emission (10%)?
- 2. Describe
 - a. Bohr's postulate of the atom (5%).
 - b. Space quantization (5%).
 - c. Uncertainty Principle (5%).
 - d. Frank-Hertz experiment and its significance (5%).
- 3. The wave function for a particle is given by $\phi(x) = Ae^{-bx^2 + ikx}$
 - a. Find the normalization constant A (10%).
 - b. Find the expectation value of momentum p (10%).
 - c. Draw a graph of probability density that the particle can be found in the space (10%).
- 4. The shortest wavelength photon in the Balmer series for hydrogen is 364.6 nm.
 - a. Find the energy of photons corresponding to this wavelength (10%).
 - b. Find the longest wavelength photon in the Balmer series (10%).
- 5. A particle of mass m is bounded to a one-dimensional potential $V(x) = m\omega^2 x^2 / 2$.
 - a. Write down the time-independent Schrödinger equation (10%).
 - b. Calculate the energy corresponds to the eigenfunction $u_0(x) = Ae^{-\frac{m\omega}{2\hbar}x^2}$ with A the normalization factor (10%).