

系別:物理學系

科目:近代物理

准帶項目請打「V」
V 簡單型計算機
本試題共 / 頁, 大題

[每大題配分 20 分]

- 1. (a) Discuss the significance about the zero-point motion of a quantum particle in a rigid box.
 - (b) Discuss the Compton effect. Do you observe a Compton effect with visible light? Why?
 - (c) What is the difference between Davisson-Gemer experiment and Thomson experiment?
 - (d) Describe the Stern-Gerlach experiment and its significance.
- 2. (a) The X-ray spectrum of a metal target consists of a broad continuous spectrum plus a number of lines. Discuss the origin of the spectra.
 - (b) Describe the Wine displacement law. Sketch roughly the spectral distribution (energy density $\rho(\lambda)$ verse wave length λ) of black body radiation at several different temperatures.
 - (c) In the photoelectric effect, explain why the stopping potential depends on the frequency of the light but not on the intensity?
- (d) Imagine a single free electron in the atmosphere. Does the spin angular momentum vector of the electron align with the magnetic field lines due to the Earth's magnetic field? Why?
- 3. Consider the electron wave function:

$$\psi(x) = \begin{cases} C \cdot \sin(\frac{2\pi x}{L}), & \text{for } 0 \le x \le L \\ 0, & \text{for } x < 0 \text{ or } x > L \end{cases}$$

- (a) Determine in terms of L the normalization constant C.
- (b) Draw a graph of $\Psi(x)$ over the interval: $-L \le x \le 2L$.
- (c) Draw a graph of $|\Psi(x)|^2$ over the interval : $-L \le x \le 2L$.
- (d) What is the probability that an electron is in the interval: $0 \le x \le L/3$.
- 4. Consider a particle of mass m confined in a rigid, one-dimensional box of length L. The potential -energy function that describes the particle is: $U(x) = \begin{cases} 0, & \text{for } 0 \le x \le L \\ \infty, & \text{for } x \le 0 \text{ and } x \ge L \end{cases}$
 - (a) Find the solution $\Psi(x)$ for the time independent Schrödinger equation.
 - (b) Find the allowed energies.
 - (c) Find the normalized wave function, $\Psi_n(x)$.
 - (d) Calculate the probability density at the position x inside the box.
- 5. A particle of mass m in a finite potential quantum well of depth U_0 and width L. with energy $E \le U_0$.
 - (a) Write the time independent Schrödinger equation of $\Psi(x)$ for $x \ge L$.
 - (b) If $\Psi(x=L) = \Psi_0$, find the general solution of Schrödinger equation for $x \ge L$.
 - (c) Find the penetration distance η , (the distance of location as $\Psi(x) = e^{-1} \Psi_0$).
 - (d) If the wave function for a particle in a finite quantum well is shown in Fig. 5b, What is the particle's quantum number?

