淡江大學 96 學年度碩士班招生考試試題

系別:物理學系

科目:近代物理

准帶項目請打「V」

的單型計算機

本試題共 | 頁

[※每大題 20 分]

1 The frequency form of the Planck's distribution law is

$$\rho_T(\nu) = \frac{8\pi \nu^2}{c^3} \frac{h\nu}{e^{h\nu/kT} - 1}.$$

- (a) Discuss the asymptotic results for $\nu \to 0$ and $\nu \to \infty$.
- (b) Obtain $ho_T(\lambda)$, the wavelength form of the spectral energy density, from $ho_T(
 u)$.
- (c) Qualitatively sketch $\rho_T(\lambda)$ versus λ for several different temperatures.
- (d) Describe the Wien's displacement law.
- (e) Explain the term "ultraviolet catastrophe".
- 2. (a) Does a television tube (CRT-TV) emit x rays? Why?
 - (b) Do you observe a Compton effect with visible light? Why?
 - (c) Can pair production occur in vacuum? Why?
 - (d) What is the difference between Positronium atoms and Hydrogen atoms?
 - (e) What is the difference between Davisson-Gemer experiment and Thomson experiment?
- 3. Answer the following questions for the hydrogen atom eigenfunction ψ_{321} .
 - (a) Calculate the Bohr radius a_0 , based on the Bohr's model.
 - (b) Write down the total energy in eV.
 - (c) Write down the expectation value of the radial coordinate in a_0 .
 - (d) Write down the orbital angular momentum.
 - (e) Write down the z-component of the orbital angular momentum.
- 4. The infinite square well potential is written as

$$V(x) = \begin{cases} 0 & -a < x < a \\ \infty & elsewhere \end{cases}$$

- (a) Directly write down the eigenfunctions $\Psi(x,t)$ for the ground state and the first excited state.
- (b) Accurately calculate the uncertainties Δx and Δp for the ground state (n = 1).
- (c) Roughly estimate the uncertainties Δx and Δp for the ground state.
- (d) Evaluate the expectation value of x and p for a very simple mixed state

$$\Psi(x,t) = [\Psi_1(x,t) + \Psi_2(x,t)]/\sqrt{2}$$

- (e) Comment on the relation between $\langle p \rangle$ and $\langle x \rangle$ for the above mixed state.
- 5. An one-dimensional potential well is given in the form of a delta function at x = 0,

$$V(x) = -V_0 \delta(x), V_0 > 0.$$

- (a) Roughly sketch $\psi(x)$ versus x for the bound state, $-V_0 < E < 0$.
- (b) Derive the energy of the bound state.
- (c) Derive the transmission coefficient, when a beam of particles, each of mass m and energy E > 0, is incident from the left.