淡江大學 95 學年度碩士班招生考試試題

系別:物理學系

科目:近代物理

	准带项目請打「V」
	簡單型計算機
	本試題共 /
	~
1. (25 points) Answer the following questions. Be concise and to the point.	
(a) (5 points) Discuss the photoelectric effect and its significance.	
(b) (5 points) Explain quantum tunneling. Give two physical examples of this	s effect.
(c) (5 points) Discuss the Stern-Gerlach experiment and its significance.	
(d) (5 points) Describe the difference between bosons and fermions? Give tw	o examples of each particles.
(c) (5 points) Explain in pair-annihilation processes why we observe $e^- + e^+$	• •
 (15 points) Consider a non-relativistic electron moving in the plane perpendicula field. Use Bohr's quantization rule to calculate the energy levels of the electron 	
3. (20 points) Let the potential of a one-dimensional potential well be given by	
$\dots \qquad (0 \qquad 0 < x < L,$	·
$V(x) = \begin{cases} 0 & 0 < x < L, \\ \infty & \text{otherwise.} \end{cases}$	
(a) (10 points) Find the eigenvalues and eigenfunctions of the time-independe	ent Schrödinger equation.
(b) (5 points) Consider two noninteracting electrons in the potential well. We wave function of the lowest energy state if the two electrons are in the same	
(c) (5 points) Continue from (b), what are the energy and the total wave fund the two electrons are in <i>different</i> spin states?	ction of the lowest energy state if
4. (20 points) Consider a system which is described by the state	
$ \Psi\rangle = N \left[\sqrt{3} 1,1\rangle - 1,0\rangle + 2 1,-1\rangle \right],$	
where $ \ell, m\rangle$ are normalized eigenstates of the angular momentum operators L^2 corresponding eigenvalues $\ell(\ell + 1)\hbar^2$ and $m\hbar$, respectively, and $N > 0$ is a norm	$(= L_x^2 + L_y^2 + L_z^2)$ and L_z with the palization constant.
(a) (5 points) Find the value of N so that $ \Psi\rangle$ is normalized.	
(b) (5 points) Find $L_{\pm} \Psi\rangle$ and $L_{-} \Psi\rangle$, where $L_{\pm} = L_{x} \pm iL_{y}$.	
(c) (5 points) Calculate the expectation values of L_x and L^2 in the state $ \Psi\rangle$.	
(d) (5 points) If L_z is measured, what values will be obtained? With what prob	pabilities?
5. (20 points) Let us try to understand the physics of neutrino oscillations. Conside system whose basis states we shall call $ v_e\rangle$ and $ v_{\mu}\rangle$ (corresponding to the electr produced in weak decay processes). At time $t = 0$ the system is in the state $ v_e\rangle$ system in the $(v_e\rangle, v_{\mu}\rangle)$ basis can be written as	on-type and muon-type neutrinos
$H = \begin{pmatrix} M & -i\Delta \\ i\Delta & M \end{pmatrix},$	
where $M \gg \Delta > 0$ are constants.	
(a) (5 points) Find the eigenvalues E_j and the normalized eigenstates $ v_j\rangle$ of E	1. Here $j = 1, 2$.
(b) (5 points) Find the state of the system at time $t > 0$.	
(c) (5 points) Calculate the probability that the system is in the state $ v_{\mu}\rangle$ as a	function of time.
(c) (5 points) The above analysis provides a simple explanation of the oscilla	tion $v_* \rightarrow v_{**}$ Given that neutrino

>6