淡江大學 99 學年度碩士班招生考試試題

系別:物理學系

科目:物理數學

- 1. Prove the identity $(\vec{C} \times \vec{D}) \cdot (\vec{E} \times \vec{F}) = (\vec{C} \cdot \vec{E})(\vec{D} \cdot \vec{F}) (\vec{C} \cdot \vec{F})(\vec{D} \cdot \vec{E})$ for the vectors in the 3-dimensional Cartesian coordinate system. (20%)
- 2. For A a non-Hermitian operator, show that
 (a) $A + A^+$ and $i(A A^+)$ are Hermitian operators. (10%)
 - (b) show that, by applying the result above, every non-Hermitian operator may be written as a linear combination of two Hermitian operators. (10%)
- 3. (a) Show that, by multiplying $I(x) = e^{K(x)}$ with $K(x) = \int_{-x}^{x} P(t)dt$, called integration factor, to the first-order, linear ODE (dy/dx) + P(x)y = Q(x), we can express the solution as $y(x) = e^{-K(x)} [\int_{-x}^{x} e^{K(s)} Q(s) ds + \text{constant}]$. (10%)
 - (b) With the condition $y(\pi) = 1$, find the solution of the ODE $x(dy/dx) 2y = x^3 \cos 4x$. (10%)
- 4. Apply the residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{\cos(2x)}{1+x^3} dx$. (10%)
- 5. Find the Fourier transform of the triangular pulse

$$f(x) = \begin{cases} k(1 - a|x|), |x| < \frac{1}{a} \\ 0, |x| > \frac{1}{a} \end{cases}$$
 (10%)

6. Apply the Fourier transformation $p(k,\tau) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} q(x,\tau) e^{ikx} dx$ to show that the solution of the one-dimensional Fermi age equation $[\partial q(x,\tau)/\partial \tau] = [\partial^2 q(x,\tau)/\partial x^2]$ (here, q is the number of neutrons that slow down, falling below some given energy per second per unit volume and τ in a measure of the energy loss) is $q(x,\tau) = \frac{S}{\sqrt{4\pi\tau}} e^{-x^2/4\tau}$ with $S\delta(x) = q(x,0)$ a plane source of neutrons at x=0 emitting S neutrons per unit area per second. (20%)