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1. Find the general solution for the following differential equations:

‘ a’y dy .
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? = x? - 2. Find the normal vector and the

2. Consider the surface z

tangential plane to this surface at point (1,1,0). (20} )

3. The definition of the convolution of f(x) with g(x). is denoted -
J(x)*g(x), and is given by f(x)* g(x) = .fgf(x' Yg(x—x)dx , and the

Laplace transform of the convolution is
LS () g(0)} = 2{ f ()} 2{g(x)} = F(s)G(s)

@)= Fls) | (207)
£{g(x)} = G(s)

where

Find a function f{x) satisfying f(x)=2x"+ [ f(x~x)e™ dx
[ The Laplace transform of x” and e® are

x{x"}=;§f—pn=1,2,3 ...... e}
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4. The moments of inertia of a uniform square plate of length a about the

X, y and z axes chosen as shown in Fig.1, is given
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Find the (a) principal moments of inertia (eigenvalues) and (b) the

directions of the principal axes for the plate (eigenvectors). >y 2 )

5. Solve the parﬁal differential equation with some boundary conditions.
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