淡江大學 95 學年度碩士班招生考試試題

		7	推帶項目請打「V」
			簡單型計算機
● 請詳細列出名	各步驟及計算過程,否則不予	·計分	本試題共 / 頁
1. A thin insulating rod of length L lies	s along x-axis and carries a unifor	nly distributed charge	+0
(a) Find the electric field at a point	•		•
(b) At large distances from the rod	· · ·		
discussion on your results.			(3%)
2. A thin annular disk of inner radius a	and outer radius b carries a unifor	rm surface charge den	sity σ , as
shown in <u>Fig. 2</u> .			
(a) Find the potential at a distance z above the center of the charge distributions.		(10%)	
(b) Use your result from (a) to calculate the electric field at this point.			(8%)
3. A conducting solid sphere of radius	R carries a total charge Q.		
(a) Find the electric field and the ele	ectric potential inside and outside	the sphere. Set the refe	erence
point at infinity.			(16%)
(b) Plot the electric field and the ele	ectric potential as a function of r fr	om the center of the s	phere. (4%)
4. A circular loop of radius <i>R</i> , carries a	a steady current <i>I</i> .		
(a) Find the magnetic field a distar			(10%)
(b) Find the magnetic moment of t	he loop.		(5%)
5. A square loop of wire (side <i>a</i>) lies o	n a table, a dictance e from a very	long streight wire, wh	ich
carries a current <i>I</i> , as shown in Fig.		iong straight whee, wh	lich
(a) Find the flux of the magnetic fi			(10 %)
(b) If someone now pulls the loop	• •	e, at speed v, what	· · /
electromotive force (emf) is generated? In what direction does the current flow?		(10 %)	
(c) What if the loop is pulled to the right at speed v , instead of away?		(2 %)	
5. A metal strip of length L pivoted at	one end is rotating freely with an a	ingular velocity ω in a	1
uniform magnetic field $\mathbf{B} = \mathbf{B}\hat{z}$ as			
ends (a and b) of the strip? Which end of the strip is positive with respect to the other end		1? (12%)	
		a	
<u>++++++</u>	p ^p	а	
<> ما	z		
L d		\wedge	
Fig. 1		S	
Z∱	b	V	
	Fig. 2	-	
α	U	Fig.	. 3
L			