淡江大學 95 學年度進修學士班轉學生招生考試試題

系別:資訊工程學系三年級

科目:資 訊 概 論

9 -

准帶項目請打「V」]	
簡單型計算機		
本試題共 2	頁	-

- 1. Represent the decimal number -25 using 8-bit by the following notation: (15%)
 - (a) signed magnitude,
 - (b) 2's complement, and
 - (c) excess-127.
- Represent decimal number 12.25 by using IEEE standard 754 single precision (32-bit) floating-point notation. (5%)
- 3. Give the full names of the following network terms (acronyms): (20%)
 - (a) WWW
 - (b) HTML
 - (c) FTP
 - (d) TCP
 - (e) IP
 - (f) DHCP
 - (g) ARP
 - (h) CGI
 - (i) DNS
 - (j) NAT
- 4. In the TCP/IP network reference model, it can be divided into five layers from layer 1, physical layer, to layer 5. (10%)
 - (a) Show the other four layer's names.
 - (b) Give example protocols used for each layer.

	Layer 5
	Layer 4
	Layer 3
	Layer 2
Physical	Layer 1

- 5. Simplify the Boolean function $F = \overline{A}\overline{B}\overline{C} + \overline{B}C\overline{D} + A\overline{B}\overline{C} + \overline{A}BC\overline{D}$. (10%)
- 6. A half adder is an arithmetic circuit that generates the sum of two binary digits. The circuit has two inputs and two outputs. We assign the symbols X and Y to the two inputs and S (for "sum") and C (for "carry") to the outputs. Design the half adder circuit using logic gates, i.e., AND, OR, NOT, XOR, etc. (10%)

淡江大學 95 學年度進修學士班轉學生招生考試試題

系別:資訊工程學系三年級

科目:資 凯 概 論

9-2

准帶項目請打「V」 簡單型計算機 本試題共 2 頁一之

7. What will be the outputs of the following C program? (10%)

```
void foo(int a, int b)
{
    int c = a;
    a = b;
    b = c;
}

void goo(int *a, int *b)
{
    int c = *a;
    *a = *b;
    *b = c;
}

void main()
{
    int a = 3, b = 5;
    goo(&a, &b);
    printf("a = %d, b = %d\n", a, b);
    foo(a, b);
    printf("a = %d, b = %d\n", a, b);
}
```

- 8. In the famous Towers of Hanoi problem, show how many disk moves are needed to move n disks from peg-1 to peg-3 using peg-2 as the auxiliary peg. Justify your answer. (10%)
- 9. Give the following numbers:

31, 25, 87, 47, 14, 69, 76, 55, 95

Show two different methods to construct a min-heap in heap sort. (10%)