淡江大學 103 學年度進修學士班轉學生招生考試試題

系	别:	: 資訊工程學系三年級 科目	:離	散 數	學		
考訂	式日期	期:7月18日(星期五) 第3節	本語	試題共	大題,		頁
√	For each of these arguments determine whether the argument is correct (T) or incorrect (F) (是						
	非題	題 25pts)		:			
	1.	Everyone enrolled in the university has	lived in	a dormito	ory. Mia has r	never li	ved in a
		dormitory. Therefore, Mia is not enrolled in the u	universit	y.			
	2 A easy book is fun to read. Mary's book is difficult to read. Therefore, Ma						ok is no
		fun to read.					
	3.	Mary likes all teachers. Mary likes Mr. Le	ee. There	fore, Mr. I	Lee is a teache	r.	
	4.	If x is a positive real number then x^2 is a positive real number. Therefore, if a^2 is positive					
		where a is a real number, then a is a positive real number.					
	5.	If $x^2 \neq 0$, where x is a real number, then $x \neq 0$. Let a be a real number with $a^2 \neq 0$,					
		then $a \neq 0$.					
√	Show the work in details to get full credits						
	1.	(10 pts) Suppose n ≥1 is an integer. How many fu	inctions	are there fi	om the set { 1	.,,r	1} to the
		set {1,2,3}?					
	2.	(10 pts) What is the minimum number of student sure that at least six were born in the same month		ed in a disc	rete mathema	tics clas	ss to be
	3.	(10 pts) Which of these relations on the set of all	people a	are equival	ence relations	?	
		(a) $\{(a,b) a \text{ and } b \text{ are the same age}\}$	people	are equival		•	
		(b) $\{(a,b) a \text{ and } b \text{ speak a common language}\}$					
			e e				
	4.	(20 pts) For primitive statements p , q and r . Show are logically equivalent. Using	w that ($p \rightarrow r) \vee ($	$q \rightarrow r$) and	$(p \wedge q)$	-> r
		(a) Truth table					
		(b) Logical equivalence					
	5.	(10 pts) Show that if n is a positive integer, then	1+2+	$\cdots + n = \frac{n}{n}$	$\frac{(n+1)}{2}$		
	6.	(15 pts) Let $A = \{0,2,4,6\}$ B= $\{0,1,2,3\}$ C= $\{0,3,6\}$ (c) $A \cap (B \cup C)$	What ar	e (a) $A \cup$	$B \cup C$ (b)	$A \cap B$	γC