淡江大學 98 學年度轉學生招生考試試題

系別:數學學系二年級

科目:線性代數

准	萨 項	日請	打	۲V	.]
		計	算	機	
本試題共		8	大	顒,	

頁

- 1. (10%) Find the inverse of $\begin{bmatrix} 1 & 4 & -1 \\ 2 & 7 & 1 \\ 1 & 3 & 0 \end{bmatrix}$
- 2. (10%) Given that D is diagonal and nonsingular and that $D = (I + A)^{-1}A$ prove that A is diagonal also.
- 3. (10%) Let Λ be 3×3 matrix, and let $v_1, v_2, ..., v_n$ be linearly independent vectors in R^n expressed as $n \times 1$ matrices. What must be true about Λ for $\Lambda v_1, \Lambda v_2, ..., \Lambda v_n$ to be linearly independent?
- 4. (10%) Prove the Cauchy- Schwarz Inequality

 If u and v are vectors in a real inner product space, then $|\langle u, v \rangle| \leq ||u|| ||v||$
- 5. (20%) Consider the vector space \mathbb{R}^3 with the Euclidean inner product.

(1) Apply the Gram-Schmidt process to transform the basis vectors $u_1 = (1,1,1)$, $u_2 = (0,1,1)$, $u_3 = (0,0,1)$ into an orthonormal basis $\{q_1,q_2,q_3\}$.

(2) Find the QR-decomposition of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.

6. (20%) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator given by $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} -2x_3 \\ x_1 + 2x_2 + x_3 \\ x_1 + 3x_3 \end{bmatrix}$.

Let $B = \{(1,0,0), (0,10), (0,0,1)\}$ be a basis for R^3 .

- (1) Find $[T]_B$ (the matrix of T with respect to the basis B).
- (2) Find a basis B_i for R^3 such that $[T]_{B_i}$ is diagonal.
- 7. (10%) Find a matrix P that diagonalizes $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$
- 8. (10%) Suppose $T: V \to W$ is a linear transformation from n-dimension vector space V to a vector space W and $\{v_1, v_2, ..., v_n\}$ is a basis of V. Show that if $\{v_1, v_2, ..., v_r\}$, where $1 \le r < n$, is a basis of ker T then $\{T(v_{r+1}), T(v_{r+2}), ..., T(v_n)\}$ is a basis of rank T.