系別:數學學系二年級

科目:線性代數

Partial credit-You must show all your work.

1. (10 %) Consider the system of equations

$$2x_1 + 5x_2 - x_3 = a$$
$$x_1 + 2x_2 = b$$
$$3x_1 + 7x_2 - x_3 = c$$

Determine conditions on a, b, c that are necessary and sufficient for the system to be consistent.

2. (10 %) Let S_1 and S_2 be subspaces of a vector space V. Suppose $S_1 \neq \{0\}$, $S_1 \neq V$, $S_2 \neq \{0\}$ and $S_2 \neq V$. Show that there exists a vector $\mathbf{v} \in V$ such that $\mathbf{v} \notin S_1$ and $\mathbf{v} \notin S_2$.

3. (10 %) Let
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix}$$
. Find A^{-1} .

4. Let $M_{33}=\left\{\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}\middle|a_{ij}\in\mathbb{R}\right\}$ be the vector space of all 3×3 matrices. Define a linear transformation $T:M_{33}\to\mathbb{R}$ by

$$T\left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\right) = a_{11} + a_{22} + a_{33}.$$

- (1) (10 %) Find a basis for ker T.
- (2) (10 %) Find nullity T and rank T.

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by

$$T(a, b, c) = (2a + b, b - c, c - 3a).$$

Let $\mathcal{B}_1 = \{(1,1,0), (1,0,1), (0,1,0)\}$ and $\mathcal{B}_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$ be two bases of \mathbb{R}^3 .

- (1) (10 %) Find $[T]_{\mathcal{B}_1}$ (the matrix of T with respect to the basis \mathcal{B}_1) and $[T]_{\mathcal{B}_2}$ (the matrix of T with respect to the basis \mathcal{B}_2).
- (2) (10 %) Find a matrix P such that $P^{-1}[T]_{B_1}P = [T]_{B_2}$.

6. (10%) Let A be a 3×3 real orthogonal matrix. Suppose $\lambda \in \mathbb{R}$ is an eigenvalue of A. Show that either $\lambda = 1$ or $\lambda = -1$.

7. (10 %) Let $T: V \to W$ be a one-to-one linear transformation with dim $V = n = \dim W$. Show that T is onto.

8. (10 %) Let $A = \begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}$. Find an invertible matrix P that makes $P^{-1}AP$ a diagonal matrix.