系別:數學學系二年級

科目:線性代數

1. Find a matrix Λ that satisfies the following equation

$$(A^{T} \begin{pmatrix} 4 & 0 \\ 1 & -1 \end{pmatrix})^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$$
 (10%)

- 2. let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2x + y, y 3z, 2y + 8z)
 - a) Find a matrix representation of T with respect to the standard bases. (5%)
 - b) Find the characteristic polynomial, eigenvalues and eigenvectors of T. (10%)
 - c) Is T diagonalizable? Give your reason. (5%)
- 3. Let $P_2(R)$ be the set of polynomial with degree ≤ 2 and $(P_2(R), \langle \cdot, \cdot \rangle)$ be

an inner product space with $\langle p(x), q(x) \rangle = \int_{0}^{1} p(x)q(x)dx$ for any

$$p,q \in P_2(R)$$
. Let $W = \{ p \in P_2(R), p(0) = 0, p(1) = 0 \}$

- a) Show that W is a linear subspace of $P_2(R)$ (5%)
- b) Find an orthonormal basis of W. (5%)
- c) Find an orthonoraml basis of W^1 , where W^1 is the orthogonal complement of W in $P_1(R)$. Give your reason. (10%)
- 4. Let < ., .> be an inner product on a finite dimensional vector space V. Let $T: V \to V$ be an isomorphism. For any v, w in V, define << v, w>=< T(v), T(w)>, show that << ., .>> is an inner product on V. (10%)
- 5. Let V be a vector space and $T: V \to V$ be a linear transformation satisfying $T^2 = T$
 - a) Show that $V = KerT \oplus Im T$ (10%)
 - b) Let $P_1(R)$ be the set of polynomial with degree ≤ 2 . Let $T: P_1(R) \to P_1(R)$ be defined by $T(a+bx+cx^2) = (a-b+c)(1+x+x^2)$. Show that $T^2 = T$ and find a matrix representation of T. (10%)
- 6. Let U, W be subspaces of a vector space V. Suppose that $U \neq O$, $W \neq O$ and $U \cap W = \{O\}$, here O is the zero element of V. Show that if $u \in U$, $w \in W$, then u, w are linearly independent. (10%)
- 7. Let A, B be n by n matrices. Suppose that the system (AB) x = 0 has only zero vector solution, show that Ax = 0 has only zero vector solution. (10 %)