淡江大學九十四學年度轉學生招生考試試題

系別: 數學系二年級 科目:線 性 代 數

1. Let
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 3 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial of A. (5 points)
- (b) Find eigenvalues and eigenvectors of A. (5 points)
- (c) Find the minimal polynomial of A. (5 points)
- (d) Show that A is not diagonalizable. (5 points)
- (e) Let f(t)=(t-2)(t+1)t(t-2)-2t-3. Find f(A). (5 points)
- (f) Show that A is invertible and find its inverse A-1. (5 points)
- 2. Show that if A is $n \times n$, with A is skew symmetric $(A = -A^T)$, and n odd, then det(A) = 0. (10 points)
- 3. Let A and B be matrices of sizes $m \times n$ and $n \times p$ respectively. Show that rank (AB) \leq rank (A). (10 points)
- 4. Find a polynomial P(x) of degree 2 such that P(0)=2, P(-1)=3, P(2)=4. (10 points)
- 5. Suppose that $\{x, y\}$ is a linearly independent set in a vector space V. Show that if $T: V \to W$ is a one -to-one linear transformation, then $\{T(x+y), T(2x-3y)\}$ is also linearly independent. (10 points)
- 6. Show that {(1,-1,0), (1,1,0), (1,1,1)} is a basis in R³.(10points)
- 7. Let V be the space consisting of all polynomials of degree less than or equal 2 and the zero polynomial. Let $B=\{x^2,x,1\}$ Let T be the linear transformation from V to V defined by T(p(x))=p(x-1). Find the matrix of T with respect to the basis B. (10points)
- 8. Let $U = \text{span}\{s, t\}$ in R^4 , where $s = (1, 10, 1)^T$ and $t = (0, 1, 1, 2)^T$.

Find the orthogonal projection of $\mathbf{x} = (a, b, c, d)^T$ on U. (that is, find a formula for $\text{Proj}_{\mathcal{U}}(\mathbf{x})$). (10 points)