淡江大學九十一學年度日間部轉學生招生考試試題

系別:數學系二年級

科目:線性代數

准帶項目請打「○」否則打「× 」 計 算 機

本試題共 / 頁

- 20% 1. Let V be a vector space, and suppose that T and U are linear operators on V such that
 - (a) U is onto.
 - (b) The null spaces of T and U are finite-dimensional.

Then the null space of TU is finite-dimensional, and

$$dim(\mathbf{N}(\mathbf{T}\mathbf{U})) = dim(\mathbf{N}(\mathbf{T})) + dim(\mathbf{N}(\mathbf{U})).$$

- 20% 2. Show that if W is a finite-dimensional subspace of an inner product space V. Then $V = W \oplus W^{\perp}$.
- 20% 3. Let $V = \mathbb{R}^3$, and let $y_1 = (1, 1, 0)$, $y_2 = (2, 0, 1)$, and $y_3 = (2, 2, 1.)$ Then
 - (a) Find the orthonormal basis β of $\{y_1, y_2, y_3\}$.
 - (b) Find the coefficients of x = (2, 1, 3) in the orthonormal basis β .
- 20% 4. Find a Jordan canonical form for A from the given data.
 - (1) Suppose that A is an 8×8 matrix, A I has nullity 2, $(A I)^2$ has nullity 4, $(A I)^k$ has nullity 5 for $k \ge 3$, and $(A + 2I)^j$ has nullity 3 for $j \ge 1$.

(2)

$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix} = SJS^{-1},$$

where S is a Jordan basis and J is a Jordan canonical form.

- 20% 5.(a) If T:P₂(R) \longrightarrow P₃(R) by T(f)(x) = 2f'(x) + $\int_0^x 3f(t)dt$. Then
 - (1) Is T one-to-one?(If yes, prove it. Otherwise, explain your answer)
 - (2) Is T onto?(If yes, prove it. Otherwise, explain your answer)
 - (b) If $T: P_2(R) \longrightarrow M_{2\times 2}$ by

$$\mathbf{T}(f) = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}.$$

Then

- (1) Is T one-to-one?(If yes, prove it. Otherwise, explain your answer)
- (2) Is T onto?(If yes, prove it. Otherwise, explain your answer)