淡江大學九十學年度日間部轉學生招生考試試題

系別:數學系二年級

科目:線性代數

准帶項目請打「〇」否則打「×」	
計算機	字典
×	×

本試題共 | 頁

1.Let
$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & -2 & 2 & 4 \\ 1 & -1 & 0 & 3 \end{bmatrix}$$
 be 3×4 matrix.

- (1) Find an invertible matrix P such that PA=R is a reduced row-echelon matrix.(15%)
- (2). Show that AX=Y is consistent for all 3×1 matrix Y.(8%)
- (3). Find a basis B for the column space of A such that B is a subset of columns of A.(7%)
- 2.Let V be the space consisting of all polynomials of degree less than or equal 2 and the zero polynomial. Let $B = \{x^2, x, 1\}$. Let T be the linear transformation from V to V defined by T(p(x))=p(x-1). Find the matrix of T with respect to the basis B.(10%)

3.Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
.

- (1) Find characteristic polynomial of A and the minimal polynomial of A.(10%)
- (2) Find an invertible matrix P such that $P^{-1}AP = D$ is a diagonal matrix.(12%)
- (3) Let f(t)=(t-2)(t-3)q(t)+2t-3, where q is a polynomial. Find f(A).(8%)
- 4. Let V and W be nonzero vector spaces. Prove or disprove the following statements.(20%)
- (1) If $W \subseteq V$ and B is a basis of V, then there is a basis S of W such that $S \subseteq B$.
- (2) If A is a square matrix and $A^2 = 0$, then A = 0.
- (3) If Z, W and $Z \cup W$ are subspaces of V, then either $Z \subseteq W$ or $W \subseteq Z$.
- (4) If T is a linear transformation from V to V, then ker(T)(the kernel of T) is a subspace of V.
- 5.Let L be the line: x=y=z in 3-space. Find the orthogonal projection onto L. (10%)