淡江大學八十八學年度日間部轉學生招生考試試題

系别:數學系二年級

科目:線性代數

本試題共 / 頁

- 1. (15%) Definition: Let V be a vector space and let $S = \{v_1, v_2, \dots, v_k\}$ be vectors in a vector space K. The set of all linear combination of v_1, v_2, \dots, v_k is called the span of v_1, v_2, \dots, v_k and is denoted by Span(S).
 - a. Extend the linearly independent set $S = \{(1,0,-1,0),(-1,1,0,0)\}$ to a basis in \mathbb{R}^4 .
 - b. Find a basis from S for Span(S), where

$$S = \{(1, -1, 2, 3), (-2, 2, -4, -6), (2, -1, 6, 8), (1, 0, 4, 5), (0, 0, 0, 1)\}$$

- 2. (30%) Prove or disprove the following statement.
- a. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. If $\{v_1, v_2\} \subset \mathbb{R}^2$ is linear dependent, then $\{T(v_1), T(v_2)\}$ is linearly dependent.
- b. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. If $\{v_1, v_2\} \subset \mathbb{R}^2$ is linear independent, then $\{T(v_1), T(v_2)\}$ is linearly independent.
- c. Let V and W be vector spaces and $T:V\to W$ be a linear transfromation. If $\lambda_1\neq\lambda_2$ are eigenvalues of T, and v_1,v_2 are eigenvector corresponding to λ_1 and λ_2 , respectively, then v_1,v_2 are linear independent.
- 3. (20%) Let P_n be the set consisting of all polynomials of degree less than or equal n and the zero polynomial. Let $B = \{1, x, x^2\}$, $B' = \{-x + x^2, 1 + x, x\}$. Let $T: P_2 \to P_2$ be the linear transformation defined by $T(a + bx + cx^2) = -2c + bx$.
 - a. Find the matrix A of T with respect to the standard basis B.
 - b. Find the matrix A of T with respect to the standard basis B'.
 - 4.(15%) Let A be the following matrix

$$\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 3
\end{bmatrix}$$

Compute A^{99} .

5.(20%) Find a Jordan canonical form for the matrix

$$\begin{bmatrix} 4 & 0 & -1 & -1 \\ -4 & 2 & 2 & 2 \\ 2 & 1 & 2 & 0 \\ 2 & -1 & -2 & 0 \end{bmatrix}$$