淡江大學九十三學年度轉學生招生考試試題

系別: 化學學系二年級

科目:普通化學

節次: 7月13日第三節 本试题共 2

************請按題序作答並標示清楚答案之題號***********

第一部份:選擇題 (單選,每題4分,共20分)

- 1. All of the following aqueous solutions have the same analytical concentrations. Which one has the correct pH relation?
 - (A)HOCl > HOI (B) $H_2SeO_4 > H_2SeO_3$ (C) $NaCN > FeCl_3$ (D) $PH_3 > NH_3$ (E) HI > HCl
- 2. The pressures and temperatures of the following substances are indicated in the corresponding parentheses.

He(750 torr, 0 °C), N₂O(14.5 psi, 0 K), H₂O(1atm, 300 K), NaCl(1 bar, 100 °C) Which of the following is the correct order of entropies for the above-substances?

- (A) $H_2O > NaCl > He > N_2O$
- (B) $N_2O > H_2O > NaCl > He$
- (C) $He > N_2O > H_2O > NaCl$
- (D) NaCl > N_2O > He > H_2O
- (E) He > H_2O > NaCl > N_2O
- 3. The following reactions proceed to the right, as written.

$$2H^{+} + Cd_{(s)}$$
 $H_{2(g)} + Cd^{2+}$
 $2Ag^{+} + H_{2(g)}$ $2Ag_{(s)} + 2H^{+}$
 $Cd^{2+} + Zn_{(s)}$ $Cd_{(s)} + Zn^{2+}$

Choose the correct order of the strength for the oxidizing agents in the above reactions.

- (A) $Ag > H_2 > Cd > Zn$
- (B) $Ag^+ > H^+ > Cd^{2+} > Zn^{2+}$
- (C) $Zn^{2+} > Cd^{2+} > H^+ > Ag^+$
- (D) $Z_n > C_d > H_2 > A_g$
- (E) $Ag^{+} > H_{2} > Cd^{2+} > Zn$
- 4. Which of the following molecules contains the shortest carbon-carbon bond?
 - $(A) C_2H_2$
 - (B) C_2H_4
 - $(C) C_2H_6$
 - (D) C₂Cl₄
 - (E) (B) and (D)
- 5. The ionic strength of an aqueous solution of 0.010 M Al(NO₃)₃ is

- (A) 0.010 M (B) 0.020 M (C) 0.030 M (D) 0.060 M (E) 0.120 M

淡江大學九十三學年度轉學生招生考試試題 8~~

系別:化學學系二年級

科目:普通化學

准带项目請打「○」否則打「×」 簡單型計算機

節次: 7 月 13 日第 三 節 本試題共 2 頁

第二部份:問答題(共80分)

1. For the following second-order chemical reaction,

where a, b, and c are the stoichiometric coefficients of A, B, and C, respectively.

- (a) Derive the integrated rate law to express the reactant concentration [A] as a function of time.

 (Use k as the rate constant and [A]₀ as the initial concentration of A in your derivations.)(12%)
- (b) Derive t_{1/2}, the reaction half-life of A, in terms of k and [A]₀. (8%)
- 2. Describe the best way to prepare a buffer solution with high buffer capacity. Derive the expression of pH value for the buffer solution you prepared. Define all the terms used in your derivation. (15%)
- 3. Describe the physical meanings of the four quantum numbers. (12%)
- For the following species, write the hybridizations for the central atoms and draw the Lewis structures to show their molecular shapes and indicate the locations of the nonbonding electrons.
 (a) I₃⁻ (b) H₃O⁺ (20%)
- 5. $C_{(s)}^{\text{diamond}} \longrightarrow C_{(s)}^{\text{graphite}}$ $\Delta G^{\circ} = -3 \text{ KJ}$ Describe and explain the stability of diamond at 25°C and 1 atm. (8%)
- 6. Describe the change of cell potential for a galvanic cell from non-equilibrium state to equilibrium state. (5%)