淡江太學八十八學平度日間部轉學生招生考試試題 系别:化學系二年級 科目:普通化學 本試題共 2 頁 | *****請標示清楚答案之題號**** | **** | '請標 | 示清 | - 楚 2 | 案 | 之題 | 號** | *** | |---------------------|------|-----|----|-------|---|----|-----|-----| |---------------------|------|-----|----|-------|---|----|-----|-----| ## 第一部份:選擇題 (單選,每題4分,共20分;答錯一題倒扣1分) - 1) Which of the following aqueous solutions is basic? - (a) KCN - (b) $Al_2(SO_4)_3$ - (c) FeCl₃ - (d) NaNO₃ - (e) NH₄Cl - 2) Which of the following ions has the smallest radius? (a) K⁺ (b) Li⁺ (c) Be²⁺ (d) O²⁻ (e) F⁻ - 3) Which of the following is a possible set of n, l, m, and s quantum numbers for the last electron added to form a gallium atom (Z=31)? (a) $3, 1, 0, -\frac{1}{2}$ (b) $3, 2, 1, \frac{1}{2}$ (c) $4, 0, 0, \frac{1}{2}$ (d) $4, 1, 1, \frac{1}{2}$ (e) $4, 2, 2, \frac{1}{2}$ - 4) Which of the following equations correctly describes the relationship between K_b for the formate ion (HCO₂⁻) and K_a for formic acid (HCO₂H)? - (a) $K_b = K_w \times K_a$ (b) $K_b = K_a/K_w$ (c) $K_b = K_w/K_a$ (d) $K_b = K_w + K_a$ (e) $K_b = K_w K_a$ - 5) Which statement(s) correctly describes the following reaction? $$3 \operatorname{Sn}^{2+}(aq) + \operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + 14 \operatorname{H}^+(aq) \implies 3 \operatorname{Sn}^{4+}(aq) + 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2 \operatorname{O}(l)$$ - (a) Both the Sn²⁺ and H⁺ ions are oxidizing agents. - (b) The $Cr_2O_7^{2-}$ ion is the oxidizing agent. - (c) The Sn²⁺ ion is reduced. - (d) The Sn⁴⁺ ion must be a weak reducing agent. - (e) None of the above are true. ## 第二部份:填充題 (每題3分,共30分) - 1) The molecular formula for hydronium ion is <u>(a)</u>. - 2) Both proteins and DNAs are biopolymers. The repeating units for proteins are ___(b)___. The repeating units for DNAs are ___(c)__. - 3) Fats in human body are usually formed by the reaction of (d) and (e) - 4) The following table is the relationship between the hybridization of the central atom and the molecular geometry. | Molecules | Hybridization | Molecular Geometry | |------------------|---------------|--------------------| | CH_4 | sp³ | Tetrahedral | | CO_2 | <u>(f)</u> | (g) | | XeF ₄ | <u>(h)</u> | <u>(i)</u> | | O_3 | sp^2 | (j) | ## 淡江大學八十八學斗度出间部將学工稻工方訊訊超 系别:化學系二年級 科目:普通化學 本試題共 _ 頁 第三部份:計算問答題(共50分) - 1) Coffein, a stimulant found in coffee, tea, chocolate, and some medications, contains 49.48% carbon, 5.15% hydrogen, 28.87% nitrogen, and 16.49% oxygen by mass and has a molar mass of 194.2. Determine the molecular formula of caffeine. (10) - 2) Given the following experimental data determine the rate law for the reaction. $$NH_4^+(aq) + NO_2^-(aq) \longrightarrow N_2(g) + 2 H_2O(l)$$ | | Initial Concentration of NH ₄ ⁺ (M) | Initial Concentration of NO_2^- (M) | Initial Instantaneous
Rate of Reaction (M/s) | | |---------|---|---------------------------------------|---|------| | Trial 1 | 5.00×10^{-2} | 2.00×10^{-2} | 2.70×10^{-7} | | | Trial 2 | 5.00×10^{-2} | 4.00×10^{-2} | 5.40×10^{-7} | 4 | | Trial 3 | 1.00×10^{-1} | 2.00×10^{-2} | 5.40×10^{-7} | (10) | - 3) At 50 °C the value of K_w, the dissociation constant for water, is 5.47 x 10⁻¹⁴. - (a) Using Le Chatelier's principle, predict whether the autoionization of water is exothermic or endothermic? - (b) Calculate the pH of pure water at 50 °C. 4) $$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$ - (a) Calculate the standard-state enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of the above reaction. (15) - (b) Predict the direction of the spontaneous reaction under standard state conditions. (5 - * Note: The standard enthalpy of formation (ΔH_1°) for NH₃(g) is -46 (kJ/mol). The standard entropy values(S°) for H₂(g), N₂(g) and NH₃(g) are +131 (J/Kmol), +192 (J/Kmol), and +193 (J/Kmol), respectively. 《注意背面尚有試題》