系別:數學學系資統組三年級

科目:機率與統計學

|   | 可否使用計算機 |        |   |   |  |
|---|---------|--------|---|---|--|
|   | 可       |        | 否 | X |  |
| • |         | 本試題共 2 |   |   |  |

P.1

本

試

題

雙

面印製

- 1. (10 points) Show that a random variable is called "memoryless" if and only if it is an exponential random variable.
- 2. (10 points) Suppose that airplane engines will fail, when in flight, with probability (1-p) independently from engine to engine. If an airplane needs a majority of its engines operative to make a successful flight, for what values of p is a 4-engine plane preferable to a 2-engine one?
- 3. (20 points) Suppose that the number of events occurs in a small interval follows from a Poisson process with parameter ②. Let X denote the waiting time until the  $\alpha^{th}$  event occurs, find the distribution function of X and its moment generating function.
- 4. (15 points) Let (X, Y) be a random vector with p.d. f.

$$f(x,y) = \begin{cases} c, & \text{if } x^2 + y^2 \le R^2 \\ 0, & \text{elsewhere} \end{cases}$$

- (a) Find the value of c
- (b) Find the marginal p.d.f. of X.
- (c) Find  $P(\sqrt{X^2 + Y^2} \le a)$
- 5. (15 points) Let the random vector (X, Y) has a bivariate normal distribution. Show that <u>the best linear predictor</u> of Y with respect to X is given by E[Y|X].

[Note]: For any real-valued functions, g and h, we say that the predictor g(X) is a better estimator of Y than h(X) does, if the m. s. e. of g(X) is less than that of h(X), that is  $E[Y-g(X)]^2 \le E[Y-h(X)]^2$ .

## 淡江大學 96 學年度轉學生招生考試試題

系別:數學學系資統組三年級

科目:機率與統計學



Piz

- 6. (15 points) Consider a uniform distribution  $\mathrm{U}(\theta,2\theta)$ .
  - (a) Find the maximum likelihood estimator of  $\theta$ .
  - (b) Does that MLE of  $\theta$  converges to  $\theta$  in probability (it is a consistent estimator)? Prove it, if it does.
- 7. (15 points) Consider the two independent distributions  $N(\mu_1,400)$  and  $N(\mu_2,225)$ . Let  $\theta=\mu_1-\mu_2$ . For testing  $H_0:\theta=0$  vs  $H_A:\theta>0$ , let  $\overline{x},\overline{y}$  denote the observed means of two independent random samples, each of size 25 from these two distributions. Find a UMP test with significant level  $\alpha=0.05$ .