淡江大學九十三學年度轉學生招生考試試題 34~1

系別:數學學系數統組三年級

科目:機率與統計學

節次: 7月14日第3 節 本試題共 2 頁

- We want to study the geographical distribution of a certain species of jumping mouse in a wide region. The region was divided into n small, equally sized zone, where one could either find or not find a trapped mouse. If the mice were randomly distributed around the region, but there were relatively few of them in total, it would be reasonable to model each zone as a Bernoulli trial, with small success probability Pn of finding a trapped mouse. If we envision increasing the number n of zones while decreasing zone size, it stands to reason that Pn should decrease. Let us suppose that Pn is proportional to (1/n). Let the random variable Xn denote the number of trapped mice throughout the region.
 - (a) Under what assumptions that the random variable X_n would have the binomial distribution with parameters (n, P_n) ?
 - (b) Show that the limiting distribution as n goes to ∞ is the Poisson probability mass function with parameter being the proportional constant as in $P_n \propto \frac{1}{n}$.
 - (c) Let T_1 be the time of the first mouse been trapped. Find it's probability density function •
- 2. Does the Cauchy density function $f(x) = \frac{1}{[\pi(1+x^2)]}$, $x \in \text{have a mean? a}$ variance? If the answer is Yes, then find it? (10 points)
- 3. Let X and Y be random variables with mean μ_x , μ_y and variance σ_x , σ_y respectively, and with correlation coefficient ρ . Suppose the conditional mean of Y given X = x is a linear function of x, then find E(Y| X = x).

(10 points)

淡江大學九十三學年度轉學生招生考試試題 36-2

系別:數學學系數統組三年級

科目:機率與統計學

准带项目請打	「〇」否則打「× 」
X	簡單型計算機

節次: 7月14日第3節本試題共 三 頁

- 4. Let independent random variables X and Y be of Uniform density function with parameter (0, 1). Let W denote the min(X, Y) and V denote max(X, Y).

 (20 points)
 - (a) Find the joint density function of (W,V).
 - (b) What is the conditional density function of V|W=w?
- 5. Let X_1, X_2, \dots, X_n be a random sample with density function $f(x; \theta)$.
 - (a) Give the definition of a statistic $Z = g(X_1, X_2, \dots, X_n)$ which is called sufficient for θ .
 - (b) Find a sufficient statistic for the parameter θ in the distribution with density $f(x; \theta) = \theta x^{\theta-1}$; 0 < x < 1.
 - (c) Show that the MLE of θ is a function of the sufficient statistic and itself sufficient. (15 points)
- 6. Let X_1, X_2, \dots, X_n be a random sample from a normal distribution with mean μ , and standard deviation σ . (20 points)
 - (a) State the statistical meaning of a $100(1-\alpha)\%$ Confident interval for μ .
 - (b) How could we use the $100(1-\alpha)\%$ C.I. for μ to test $\mu = 0$?