淡江大學九十一學年度日間部轉學生招生考試試題

系別:數學系數統組三年級 科目:機率與統計學

准帶項目請打「○」否則打「×」

X 計算機

本试题共 2 頁

Distributions that you may need:

- (1) $\underline{X}_{n\times 1} \sim \text{MVN}(\underline{\mu}_{n\times 1}, \Sigma_{n\times n})$ then the p.d.f of \underline{X} is given by $f(\underline{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\{\frac{-1}{2}(\underline{x} \underline{\mu})' \Sigma^{-1}(\underline{x} \underline{\mu})\}, \quad \underline{x} \in \mathbb{R}^n.$
- (2) $X \sim \text{Poisson}(\lambda)$ then $f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$, $x = 0, 1, 2, \cdots$.
- (3) $X \sim \operatorname{Gamma}(\alpha, \lambda)$ then $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda X}$, x > 0. with moment generating function, $\left(\frac{\lambda}{\lambda t}\right)^{\alpha}$, $|t| < \lambda$.

Some properties you may need:

Prop. 1
$$\sum_{x=0}^{k-1} \frac{(\lambda t)^x e^{-\lambda t}}{x!} = \int_{\lambda t}^{\infty} \frac{x^{k-1} e^{-x}}{(k-1)!} dx.$$

Prop.2 Let $\chi_{nx1} \sim \text{MVN}(\mu_{nx1}^1, \sigma^2 I_n)$, and Q_{nxn} be an $n\times n$ idempotent matrix (i.e. $Q^2 = Q$) with rank γ . If $\mu = 0$ or $Q_{nx1}^0 = Q_{nx1}$ then $\chi'Q\chi/\sigma^2 \sim \chi^2(\gamma)$ (i.e. a Chi-Square distribution with γ degree of freedoms). Where l_{nx1} and Q_{nx1} are $n\times 1$ column vectors of 1's and o's respectively.

Possible
$$\delta_{\alpha}$$
 - values: $P\{Z > \delta_{\alpha}\} = \alpha$
 α 0.1 0.05 0.025 0.01
 δ_{α} 1.285 1.645 1.96 2.325

Noatation: $t_{\alpha}(n)$ is the value that $P\{T > t_{\alpha}\} = \alpha$, where T has t distribution with n degree of freedoms.

- 1. In a Poisson process with a rate of λ , let N_t denote the number of arrivals in the time interval [0,t] and T_n $(n=1,2,\cdots)$ represent the waiting time for the next n arrivals.
- (a) Use the Prop.1 to show that the distribution of T_n is Gamma (n,λ) . (10 points)
- (b) Find the conditional c.d.f. (cumulative distribution function) of $(T_n T_{n-1})$ given that $N_t = 1$ and interpret your result. (10 points)

淡江大學九十一學年度日間部轉學生招生考試試題

系別:數學系數統組三年級 科目:機率與統計學

准带项目转打「〇」否则打「×」 X 計算機

本试划共 2 頁

Page 2/2

- 2. Let x_1 , x_2 , \cdots , x_n be a random sample from a Normal population with mean μ_X , variance σ^2 , denoted by $\{X_i\}_{i=1}^n \sim N(\mu_X, \sigma^2)$, and sample variance S_X^2 . And, $\{Y_i\}_{i=1}^n \sim N(\mu_Y, \sigma^2)$, with sample variance S_Y^2 . Note that μ_X , μ_Y and σ^2 are all unknown parameters.
- (a) Use Prop. 2 to show that $\frac{(n-1)S_{\chi}^2}{\sigma^2} \sim \chi^2(n-1).$ (10 points)
- (b) Show that S_x^2 is an unbiased estimators of σ^2 . (5 points)
- (c) Does S_X^2 achieve the Rao-Cramer lower bound? Justify your answer. (10 points)
- (d) Find another unbiased estimator of σ^2 with variance less than the variance of S_χ^2 ? Justify your answer. (10 points)
- (e) Use each of S_χ^2 and the estimator found in part (d) to derive two 95% confidence intervals of μ_{γ} . Explaine why those two intervals have different interval lengths. (15 points)
- If an investor wants to gain information about the unknown weekly rate of return μ on a risky asset, for how many weeks should the investor observe its rates of return in order to produce an estimate that falls within a tolerance of 0.005 of the true μ , with a probability of at least 80%? Suppose that the variance of the asset rate of return is no mare than 0.0004. (10 points)
- 4. In testing H_0 : $\theta \in \Theta_0$ against H_A : $\theta \in \Theta_A$, where Θ_0 and Θ_A are disjoint sets of possible values of the parameter θ whose union makes up the entire set of possible values for θ , assume that the significance level is 0.05. Use one or two sentences to make your conclusion when the p-value is 0.01 and the p-value is 0.1. (10 points)