## 淡江大學 103 學年度日間部轉學生招生考試試題

系別:數學學系三年級 科目:高等微積分

考試日期:7月20日(星期日) 第4節

本試題共 大題,

(1) (20%) Test for convergence or divergence. Explain your answers.

(a) 
$$\int_{0}^{\infty} \frac{x}{1+x^3} dx$$

(b) 
$$\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^p}$$
,  $p > 1$ 

(c) 
$$\int_{0}^{\infty} \frac{\sin x}{x} \, dx$$

(d) 
$$\int_{0}^{\infty} e^{-x^{2}} dx.$$
(2) Evalue the integral

Evalue the integral

(a) 
$$(7\%) \int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} \sin(x^2 + y^2) dy dx$$
.

- (b) (8%)  $\int \int e^{\frac{y-x}{y+x}} dA$ , where *E* is the trapezoid with vertices (1, 1), (2, 2), (2, 0) and (4, 0).
- (3) (15%) Let  $E_i \subset \mathbb{R}^n$  be an open set for  $i \in \mathbb{N}$ .
  - (a) Show that  $\bigcup_{n=1}^{\infty} E_n$  is open.
  - (b) Show that  $\bigcap_{i=1}^{n} E_i$  is open.
  - (c) Show that  $\bigcap_{n=1}^{\infty} E_n$  might be not open.
- (4) Let

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^4}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

- (a) (6%) Compute  $f_x(0,0)$  and  $f_y(0,0)$ .
- (b) (4%) Show that f is not differentiable at (0,0) even though both  $f_x(0,0)$  and  $f_y(0,0)$  exist.
- (5)  $a, b \in \mathbb{R}$  and a < b. Let  $f : (a, b) \to \mathbb{R}$  be a function.
  - (a) (7%) Suppose that  $|f(x)-f(y)| \le M|x-y|$  for some  $M \in \mathbb{R}$  and  $x,y \in (a,b)$ . Show that f(x) is uniformly continuous.
  - (b) (8%) Suppose that f is uniformly continuous in (a, b). Show that f can be extended to a continuous function defined on [a, b].
- (6) (10%) Let  $f : [a, b] \to \mathbb{R}$  be a continuous function, where a < b are real numbers. Show that

$$\lim_{n \to \infty} \left[ \int_a^b |f(x)|^n dx \right]^{1/n} = \max_{x \in [a,b]} |f(x)|.$$

- (7) Let  $g_n : [a, b] \to \mathbb{R}$  be a continuous function and  $|g_n(x)| < L$  for some L > 0 and all  $n \in \mathbb{N}$ .

  - (a) (7%) Show that  $\sum_{n=1}^{\infty} \frac{g_n(x)}{n^2}$  converges uniformly on [a, b]. (b) (8%) Denote  $G_n(x) = \int_a^x g_n(t) dt$ . Show that  $\{G_n(x)\}_{n=1}^{\infty}$  has a subsequence  $\{G_{n_k}(x)\}_{k=1}^{\infty}$  which is convergent uniformly.