29-1

淡江大學 101 學年度轉學生招生考試試題

系別: 數學學系三年級

科目:線性代數

考試日期:7月17日(星期二) 第1節

本試題共 7 大題, 1 頁

- 1. (13%) Let $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$. Find the inverse of A and the determinant of $(2A)^{-1}$.
- 2. (12%) Determine whether the followings are linearly dependent or linearly independent.
 - (a) $v_1 = (1,1,-2), v_2 = (2,5,-1), v_3 = (0,1,1).$

(b)
$$v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}.$$

- 3. (21%) Let $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.
 - (a) Find the characteristic polynomial, eigenvalues, and corresponding eigenvectors of A.
 - (b) Find an invertible matrix P and diagonal matrix D such that $D = P^{-1}AP$.
- 4. (12%) Let $u_1 = (1,1,1), u_2 = (0,1,1), u_3 = (0,0,1)$. Consider the standard inner product on \mathbb{R}^4 . Apply the Gram-Schmidt process to transform $\{u_1, u_2, u_3\}$ into an orthonormal basis.
- 5. (16%) Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(f) = f'' 3f' + 4f. Here $P_2(\mathbb{R})$ is the set of all polynomials with degree ≤ 2 .
 - (a) Find the matrix representation in the basis $\{1, x, x^2\}$.
 - (b) Find the range and the null space of T.
 - (c) Find the nullity and rank of T.
- 6. (10%) Let A and B be $n \times n$ matrices such that A + B = AB. Prove that AB = BA.
- 7. (16%) Let W be a finite-dimensional subspace of an inner product space $(V, <\cdot, \cdot>)$ Prove that for every x in V, there exists unique y in W and z in W^{\perp} such that x = y + z. Here W^{\perp} is the orthogonal complement of W.