淡江大學 100 學年度轉學生招生考試試題

系別:數學學系三年級

科目:線性代數

考試日期:7月19日(星期二)第1節

本試題共 8 大題,1/2

- 1. (15 points) Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (x_1 x_2 + 2x_3, 2x_1 + x_2, -x_1 2x_2 + 2x_3)$.
 - (a) Find the matrix representation of T with respect to the standard basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^3 .
 - (b) If (a, b, c) is a vector in \mathbb{R}^3 , what are the conditions on a, b, c that the vector is in the range of T? What is the rank of T?
 - (c) What are the conditions on a, b, c that the vector (a, b, c) is in the null space of T? What is the nullity of T?
- 2. (10 points) Let u = (2,1,0), v = (3,0,2) and w = (0,-2,3). Suppose that T is a linear operator on \mathbb{R}^3 that interchanges u and v, and maps w to (1,0,0). Find the matrix representation $[T]_{\mathcal{B}}$ of T with respect to the standard basis $\mathcal{B} = \{(1,0,0),(0,1,0),(0,0,1)\}$.
- 3. (10 points) Let V be the space of $n \times n$ matrices over \mathbb{R} .
 - (a) Show that for any $A \in V$, the set $\{I, A, A^2, \dots, A^n\}$ is linearly dependent.
 - (b) Show that A is invertible if and only if I belongs to $\text{Span}\{A, A^2, \dots, A^n\}$.
- 4. (15 points) Let T be a linear operator on a finite dimensional vector space V. Suppose T is idempotent, that is $T^2 = T$. Prove that
 - (a) Eigenvalues of T are either 0 or 1.
 - (b) $V = \ker(T) \oplus \operatorname{range}(T)$.
 - (c) T is diagonalizable.
- 5. (15 points) (a) Let $T: V \longrightarrow W$ be a linear transformation from vector space V to vector space W. Show that T is nonsingular (1-1) if and only if T maps a linearly independent set of vectors in V to a linearly independent set of vectors in W.
 - (b) Let $T:V\longrightarrow W$ be a linear transformation from vector space V to vector space W. Suppose $\dim V=\dim W$. Show that T is one to one if and only if T is onto.
- 6. (15 points) Let $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$. Determine whether A similar to a diagonal matrix over \mathbb{R} . If so, exhibit a basis for \mathbb{R}^3 such that A is similar to a diagonal matrix.
- 7. (10 points) Let A be a $n \times n$ matrix over the field \mathbb{F} . Let λ_1 , λ_2 be two distinct eigenvalues of A and W_1 , W_2 be the corresponding eigenspaces for λ_1 , λ_2 respectively. Show that $W_1 \cap W_2 = \{0\}$.

淡江大學 100 學年度轉學生招生考試試題

系別:數學學系三年級

科目:線性代數

考試日期:7月19日(星期二) 第1節

本試題共 8 大題, 2/2

8. (10 points) Let V be a finite dimensional vector space over a field F and dim $V \geq 2$. Let $T: V \longrightarrow V$ be a linear transformation. If there exists a vector $v \in V$ such that V is spanned by $v, T(v), T^2(V), \dots$, prove that the characteristic polynomial of T is equal to it minimal polynomial.