淡江大學 100 學年度轉學生招生考試試題

頁

系別: 數學學系三年級

科目:高等微積分

考試日期:7月19日(星期二)第4節

本試題共 大題,

- 1. (20%) A function f with domain S is said to be uniformly continuous on S if and only if for every $\varepsilon > 0$, there is a $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $|x y| < \delta$, $x, y \in S$.
 - (a) show that $f(x) = x^2$ is uniformly continuous on the interval (0,1).
 - (b) show that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .
- 2. (20%) A subset H of a metric space X is said to be compact if and only if every open covering of H has a finite subcover. Show that a closed subset of a compact set is compact.
- 3. (20%) (a) Let f(x) = |x|. Show that f is not differentiable on [-1,1]. (b) Find $\frac{d}{dx} \int_0^{2x} t \cos t \, dt$.
- 4. A sequence of functions $f_n: E \to \mathbb{R}$, where E is a subset of \mathbb{R} , is said to converges uniformly on E to a function f if and only if for every $\varepsilon > 0$ there is a $N \in \mathbb{N}$ such that

$$n \in \mathbb{N}$$
 implies $|f_n(x) - f(x)| < \varepsilon$

for all
$$x \in E$$
. Let $f_n(x) = \begin{cases} n^2 x & , 0 \le x < \frac{1}{n} \\ 2n - n^2 x & , \frac{1}{n} \le x < \frac{2}{n} \\ 0 & , \frac{2}{n} \le x < 1 \end{cases}$

- (a) Find $\lim_{n\to\infty} f_n(x)$
- (b) Find $\int_0^1 f_n(x) dx$
- (c) Find $\lim_{n\to\infty} \int_0^1 f_n(x) dx$
- (d) Show that f_n doesn't converges uniformly.

(Hint: If $f_n \to f$ uniformly on [0,1], then $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$.)

5. (20%) Let
$$f(x,y) = \begin{cases} xy\left(\frac{x^2-y^2}{x^2+y^2}\right) & , (x,y) \neq 0 \\ 0 & , (x,y) = 0 \end{cases}$$

- (a) Find $f_x(0,0)$ and $f_y(0,0)$.
- (b) Find $f_{xy}(0,0)$ and $f_{yx}(0,0)$.