淡江大學99學年度轉學生招生考試試題

系別:數學學系三年級 科目::線性代數

本試題共 5 大題, 2 頁 P.J

◆ 必須寫出計算過程。

- 1. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be linear transformation defined by T(x, y, z) = (-2x + 2y z, x 2y 3z, 5x 3y + 2z).
 - (a) (5 points) Find the matrix representation of T in the standard basis of \mathbb{R}^3 .
 - (b) (10 points) Give a basis for the kernel and range of T.
- 2 Let V be the vector space of polynomials of degree at most 2. Let $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{B}' = \{x, 1+x, -x+x^2\}$. Let $T: V \longrightarrow V$ be the map defined by T(p(x)) = p''(x) 2p'(x) where p'(x) denotes the derivative and p''(x) denote the second derivative of p(x).
 - (a) (5 points) Show that T is a linear transformation.
 - (b) (5 points) Find the matrix representation A of T relative to the basis \mathcal{B} .
 - (c) (5 points) Find the change of coordinate matrix from \mathcal{B} to \mathcal{B}' .
 - (d) (10 points) Find the matrix representation A' of T relative to \mathcal{B}' .

3. Let
$$A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -2 & -2 & 1 & 1 \\ -1 & 1 & 2 & 1 \end{bmatrix}$$
.

- (a) (10 points) Find the eigenvalues and the corresponding eigenvectors of A.
- (b) (5 points) Find the minimal polynomial of A.
- 4. (10 points) Let $\{v_1, v_2, \dots, v_n\}$ be a basis for the vector space V. Suppose that $w \in V$ is not in the subspace spanned by $\{v_1, v_2, \dots, v_{n-1}\}$. Show that $\{v_1, v_2, \dots, v_{n-1}, w\}$ is also a basis of V.
- 4. For any $n \times n$ matrices A, B,
 - (a) (10 points) Matrix AB and matrix BA have the same eigenvalues.
- (b) (5 points) Show that $AB BA \neq I_n$, where I_n denote the $n \times n$ identity matrix.

淡江大學99學年度轉學生招生考試試題

系別:數學學系三年級 科目::線性代數

本試題共 5 大題, 2 頁 P.2

- 5. (20 points) Let $T:V\longrightarrow V$ be linear transformation of the vector space V. Prove or disprove the following statements.
- (a) If $\{v_1, \dots, v_n\} \subset V$ is linearly independent, then $\{T(v_1), \dots, T(v_n)\}$ is linearly independent.
- (b) If $\lambda_1, \dots, \lambda_k$ are k distinct eigenvalues of T and v_1, \dots, v_k are the eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ respectively, then v_1, \dots, v_k are linearly independent.