淡江大學99學年度轉學生招生考試試題

系別:數學學系三年級 科目::高等微積分

本試題共 / 大題, 一 頁

- 1. (12 points) Show that $f(x) = \sin x$ is uniformly continuous on $(-\infty, \infty)$.
- 2. (12 points) Let $f:(0,2) \to \mathbb{R}$ be continuous and f'(x) exist for all x in $(0,1) \cup (1,2)$. If $\lim_{x\to 1} f'(x) = L$, show that f'(1) exists and f'(1) = L.
- 3. (12 points) Let $f : [0,1] \to \mathbb{R}$ be continuous and $f(x) \ge 0$ for all $x \in [0,1]$. If $\int_0^1 f(x) dx = 0$, show that f(x) = 0 for all x.
- 4. (12 points) Let $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$ for all $n \in \mathbb{N}$, show that $\lim_{n \to \infty} a_n$ exists and evaluate it.
- 5. (16 points)
 - (a) (8 points) Show that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for all real x.
 - (b) (8 points) Estimate $\int_0^1 e^{-x^2/2} dx$ to three decimal place.
- 6. (12 points) Evaluate $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$.
- 7. (12 points) Let

$$u(x, y, z) = x + xyz$$

$$v(x, y, z) = y + xy$$

$$w(x, y, z) = z + 2x + 3z^{2}$$

Show that x, y, z can be solved in terms of u, v, w near (0, 0, 0) and find $\partial y/\partial v$ and $\partial z/\partial u$ at (0, 0, 0).

8. (12 points) Let

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Show that f is differentiable at (0,0) while $\partial f/\partial x$ is not continuous at (0,0).