淡江大學 98 學年度轉學生招生考試試題

系別:數學學系三年級

科目:高等微積分

准帶項目請打「V」 計算機 本試題共 6 大題,

頁

- 1. (20%) A function f with domain S is said to be uniformly continuous on S if and only if for every $\varepsilon > 0$ there is $\delta > 0$ such that $|f(x) f(y)| < \varepsilon$ whenever $|x y| < \delta$, $x, y \in S$.
 - (a) Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on [0,1].
 - (b) Show that $f(x) = \frac{1}{x}$ is uniformly continuous on $[1, \infty)$.
- 2. (20%) Let $f(x, y) =\begin{cases} 0 & \text{if } (x, y) = (0, 0) \\ \frac{xy^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \end{cases}$
 - (a) Find the first partial derivative of f with respect to x at (0,0), namely, $D_1 f(0,0)$.
 - (b) Find the first partial derivative of f with respect y at (0,0), namely, $D_2f(0,0)$.
 - (c) Find the directional derivative of f at (0,0) in the direction of (u_1, u_2) with $u_1^2 + u_2^2 = 1$.
 - (d) Is f differentiable at (0,0)? Explain your answer.
- 3. (15%) Let $\{y_n\}$ be the sequence in R defined inductively by

$$y_1 = 1$$
, $y_{n+1} = (2 y_n + 3)/4$.

- (a) Show that $0 < y_n \le 2$ by induction.
- (b) Show that $y_n < y_{n+1}$ by induction.
- (c) Find $\lim y_n$.
- 4. (15%) Let $F: \mathbb{R}^5 \to \mathbb{R}^2$ be defined by

$$F(x, y, u, v, w) = (2e^x + yu - 4v + 3, y\cos x - 6x + 2u - w)$$
.

If (x, y) = (0,1) and (u, v, w) = (3,2,7), then F(x, y, u, v, w) = 0. Show that we can solve F(x, y, u, v, w) = (0,0) for (x, y) in terms of (u, v, w) near (3,2,7).

- 5. (10%) (a) Find $\frac{dy}{dx} \int_0^{2x} (t^2 \sin t) dt$.
 - (b) Find $\frac{dy}{dx} \int_{x}^{2x} (t^2 \sin t) dt$.
- 6. (20%) We say that a sequence of function $\{f_n\}$, $n=1,2,3,\ldots$ converges uniformly on $E \subseteq R$ to a function f if for every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies $|f_n(x) f(x)| < \varepsilon$ for all $x \in E$.
- (a) Let $f_n(x) = \frac{1}{n}\sin(nx+n)$ on R. Find the limit function f.
- (b) Show that $f_n(x) = \frac{1}{n} \sin(nx + n)$ converges to the limit function f uniformly on R.
- (c) Find an example of a sequence of functions $\{f_n\}$ defined on R that are not uniformly convergent.