淡江大學 98 學年度轉學生招生考試試題

系別:數學學系數學組三年級

科目:代 數

准帶項目請打「V」 計 算 機 本試題共 6 大題,

頁

- 1. (a) (10 points) Let $a, b \in \mathbb{Z}$ and $d = \gcd\{a, b\}$. Show that there exists $r s \in \mathbb{Z}$ such that ra + sb = d.
- (b) (5 points) Let a, b and c be integers. If a and c are relatively prime, show that $c \mid ab$ implies that $c \mid b$.
- (c) (5 points) Show that $p \in \mathbb{Z}$ is a prime if and only for all integers a and b, $p \mid ab$ implies $p \mid a$ or $p \mid b$.
- 2. (15 points) Let $R = \mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z} \}$.
- (a) Show that if $a^2 + b^2$ is a prime in \mathbb{Z} then $a + b\sqrt{-1}$ is a prime in \mathbb{R} . Give an example to show that the converse is not true.
- (b) Let $\alpha = 9 + 7\sqrt{-1}$ and $\beta = 1 4\sqrt{-1}$. Find $q, r \in R$ such that $\alpha = q\beta + r$ such that $|r| < |\beta|$.
 - (c) Show that if $I \subset R$ is a non-zero ideal, then R/I is finite.
- 3. (15 points)
- (a) Construct a field F over \mathbb{Q} such that $x^7 + 2x + 2$ has a root in F. Find the degree of extension of F over \mathbb{Q} .
 - (b) Construct a finite field of 27 elements.
- 4. (20 points) Let $G = \langle a \rangle$ be a cyclic group of order n.
 - (a) Show that for any $d \mid n$, there is a subgroup of order d.
 - (b) Show that if (r, n) = d, then $a^d \in \langle a^r \rangle$.
 - (c) Show that the subgroup $\langle a^r \rangle$ has order $\frac{n}{\langle r, n \rangle}$.
- 5. (15 points)
- (a) Explain why non-trivial group homomorphism $\phi: \mathbb{Z}_8 \longrightarrow \mathbb{Z}_{15}$ does not exist.
- (b) Show that a non-trivial group homomorphism $\phi: \mathbb{Z}_{15} \longrightarrow \mathbb{Z}_9$ exist by exhibiting an example.
- 6. (15 points) Let R be an integral domain.
 - (a) Show that every prime element in R is irreducible.
- (b) Suppose that R is a PID. Show that every irreducible element in R is a prime.