淡江大學 97 學年度轉學生招生考試試題

系別: 數學學系三年級

科目:線 性 代 數

可否使用計算機			
可		否	V
本試題其	+-	大 顕	,

- 1. Let $W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_1 + 2a_2 + a_3 = 0, a_1 + a_2 + 3a_3 = 0\}$. Find the basis (基底) for W and the dimension (維度) of W (10%)
- 2. Let $A = \begin{bmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{bmatrix}$. Calculate the determinant (行列式) of A and find its inverse (反矩陣). (10%)
- 3. Let $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$.
 - (a) Find the characteristic polynomial (特徵多項式), the eigenvalues (特徵值), and the corresponding eigenvectors (特徵向量) of A. (10%)
 - (b) Find an invertible matrix P and a diagonal matrix (對角矩陣) D such that $D = P^{-1}AP$. (10%)
- 4. Let $P_2(R)$ be the set of real polynomials with degree ≤ 2 and $M_{2\times 2}(R)$ be the set of all 2×2 real matrices. Define the linear transformation $T: P_2(R) \to M_{2\times 2}(R)$ by $T(p(x)) = \begin{bmatrix} p(0) & 0 \\ 0 & p(1) - p(3) \end{bmatrix}$.
 - (a) Find the range of T. (10%)
 - (b) Find the null space of T. (10%)
 - (c) Show that $\dim(P_2(R)) = rank(T) + nullity(T)$. (3%)
- 5. $\beta = \{(1,-1,0,0)^T, (0,-1,0,1)^T, (0,-1,1,0^T)\}$ is a basis for the plane $W: x_1 + x_2 + x_3 + x_4 = 0$ in \mathbb{R}^4 . Consider the standard inner product (標準內積) on \mathbb{R}^4 .
 - (a) Apply the Gram-Schmidt process on β to find an orthonormal (單範正交) basis for the plane W (10%)
 - (b) Find the orthogonal projection (正交投影) of $(1,1,0,1)^T$ on W. (10%)
- 6. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear 1-1 transformation. Suppose that $\{u_1, ..., u_k\}$ is a linearly independent (線性獨立) set of vectors in \mathbb{R}^n . Show that $\{Tu_1, ..., Tu_k\}$ is linearly independent. (10%)
- 7. A, B and C are $n \times n$ real matrices and A = BC. Show that A is invertible (可逆) if and only if B and C are invertible. (7%)