淡江大學 97 學年度轉學生招生考試試題

系別: 數學學系三年級

科目:高等微積分

	可	可否使用計算機			
	可		否		
本試題共 亡 大題,					

頁

- 1. Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1). (10 points).
- 2. Let g be defined by $g(x, y) = \frac{xy(y^2 x^2)}{x^2 + y^2}$ if $(x, y) \neq (0,0)$ and g(0,0) = 0. Find $\frac{\partial^2 g}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 g}{\partial y \partial x}(0,0)$. (10 points)
- 3. If $f: R \to R$ is differentiable and z = f(x-y), show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$. (10 points)
- 4. Let K be a compact subset of R and let f be a real -valued function on K. Prove that if f is continuous on K, then f (K) is compact. (10 points)
- 5. Let $f(x, y) = (xy, x^2 + y^2)$.
 - (1). Show that $g = f^{-1}$ exists and is differentiable in some nonempty open set containing (2,5). (10 points)
 - (2). Find Dg(2,5)(the total derivative of g at(2,5)). (10 points)
- 6. Let f be continuous on [a, b]. Show that $\int_{a}^{c} f(x) dx = 0$ for all c in [a, b] if and only if f(x) = 0 for all x in [a, b]. (15 points)
- 7. Let $f:[0,1] \rightarrow [0,1]$ be continuous. Prove that there is $c \in [0,1]$ such that f(c)=c. (10 points)
- 8. Find $\frac{dy}{dx}$ if $y = \int_{0}^{2x} \sqrt{1+t^2} dt$. (5 points)
- 9. Let $\{f_n\}$ be a sequence of real-valued functions on [0, 1] and
- f_n converges uniformly to a function f. Prove that if each f_n is continuous on [0, 1], then f is continuous on [0, 1]. (10 points)