淡江大學 97 學年度轉學生招生考試試題

7/-

系別: 數學學系數學組三年級

科目:代

數

Ą	否使用	計算権	幾 .	
可		否	X	
.試題	# 17	大題	,	1

1. (24 points)

Let $G = \langle a \rangle$ be a cyclic group of order n.

- (a) Show that if H is a subgroup of G, then $H = \langle a^r \rangle$ for some $r \in \mathbb{Z}$.
- (b) Show that for each $d \mid n$, there is a subgroup of order d.
- (c) If gcd(r, n) = 1, show that $\langle a^r \rangle = G$.
- (d) $m \in \mathbb{N}$. Find the order of the subgroup $\langle a^m \rangle$.
- 2. (16 points)
 - (a) Show that the set of integers Z is a principal ideal domain.
- (b) Show that non-zero prime ideals in \mathbb{Z} are of the form (p) where p is a prime number in \mathbb{Z} .
- 4. (20 points)

Let R be a commutative ring with identity.

- (a) Let $\mathcal{M} \subset R$ be an ideal in R. Show that \mathcal{M} is a maximal ideal in R if and only if R/\mathcal{M} is a field.
- (b) Suppose $R = \mathbb{R}[x]$ is the polynomial ring with real coefficients. Show that $(x^2 + 1)$ is a maximal ideal in R and $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$.
- 5. (10 points)

Let G be a group. Show that G is abelian if and only if the map $\varphi: G \longrightarrow G$ given by $\varphi(a) = a^2$ is a group homomorphism.

6. (10 points)

Show that groups of order 4 are abelian.

7. (20 points)

Let H, K be subgroup of the group G.

- (a) Give an example to show that $HK = \{hk \mid h \in H, k \in K \}$ may not be a subgroup.
 - (b) Show that if H is a normal subgroup of G, then HK is a subgroup of G.