淡江大學九十四學年度轉學生招生考試試題

系別: 數學學系三年級 科目:線 性 代 數

准帶項目請打「V」 簡單型計算機 節次: 月 / 3 日第 5 節 本試題共 2 頁

1. (5 points) Let A and B be $n \times n$ matrices. Is

$$(A+B)^2 = A^2 + 2AB + B^2?$$

If so, prove it; if not, give a counterexample(反例) and state under what conditions the equation is true.

- 2. (5 points) Let a, b and c be real numbers(實數) such that $abc \neq 0$. Prove that the plane ax + by + cz = 0 is a subspace(子空間) of \mathbb{R}^3 .
- 3. (10 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. If T([1,0,0]) = [-3,1], T([0,1,0]) = [4,-1], and T([0,-1,1]) = [3,5], find T([-1,4,2]).
- 4. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $L \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_1 + x_2 + x_3 \end{bmatrix}$.
 - (a) (5 points) Find the standard matrix representation(標準矩陣表示式) of L.
 - (b) (5 points) Show that L is invertible(可逆).
 - (c) (5 points) Find a formula for L^{-1} .
- 5. (10 points) Let V be a vector space with basis(基底) $\{v_1, v_2, v_3\}$. Prove that $\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ is also a basis for V.
- 6. Given a linear system,

$$x_1 + 2x_2 - x_3 = -2$$

 $2x_1 + x_2 + x_3 = 0$
 $3x_1 - x_2 + 5x_3 = 1$

(a) (5 points) Transfer this system as a matrix form Ax = b and write down A and b.

淡江大學九十四學年度轉學生招生考試試題

系別: 數學學系三年級 科目:線 性 代

准帶項目請打「V」 簡單型計算機 節次: 夕月/3日第5節 本試題共 2 頁

(b) (5 points) Solve the linear system by Cramer's rule.

7. Let
$$A = \begin{bmatrix} -2 & 0 & -1 \\ 0 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix}$$
.

- (a) (10 points) Find the characteristic polynomial(特徵多項式), the real eigenvalues(特徵值), and the corresponding eigenvectors(特徵向量) of A.
- (b) (5 points) Find an invertible matrix C and a diagonal matrix(對角矩陣) D such that $D = C^{-1}AC$.
- (10 points) Let v₁ and v₂ be eigenvectors of a linear transformation T: V → V with corresponding eigenvalues λ₁ and λ₂, respectively. Prove that, if λ₁ ≠ λ₂, then v₁ and v₂ are independent(線性獨立).
- 9. (10 points) Let P and Q be $n \times n$ matrices. We say P is similar to Q if there exists an invertible $n \times n$ matrix C such that $C^{-1}PC = Q$. Prove that similar square matrices have the same eigenvalues with the same algebraic multiplicities(代數重根數).
- 10. (10 points) Let A be an $n \times n$ matrix such that $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n . Show that A is an orthogonal matrix(正交矩陣).