淡江大學九十四學年度轉學生招生考試試題

系別: 數學學系三年級 科目:高等微積分

- 1. Show that if $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n \cos(nx)$ converges uniformly on R. (10 points)
- 2. Use the identity $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$, |t| < 1, to show that $-\ln(1-x) = \sum_{n=0}^{\infty} x^{n+1}/(n+1)$, |x| < 1. (10 points)
- 3. Find $\frac{dy}{dx}$ if $y = \int_{0}^{\sin x} \sqrt{1+t^2} dt$. (10 points)
- 4. Let $F: R \to R$ be continuous. Show that if F(x)=x for every irrational number x, then F(x)=x for every real number x. (12 points)
- 5. Let g be dined by $g(x,y) = \frac{xy(y^2 x^2)}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and g(0,0) = 0. Find $\frac{\partial^2 g}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 g}{\partial y \partial x}(0,0)$. (12 points)
- 6. Determine which of $f(x) = \sin(x)$, $g(x) = \sin(1/x)$, $h(x) = x\sin(1/x)$ is uniform continuous on $(0, \infty)$. Give your reason. (18points)
- 7. Evaluate each of the following:

(a)
$$\sum_{n=0}^{\infty} \frac{1}{(n+2)(n+3)}$$
. (8 points)

(b)
$$\lim_{n\to\infty} (1-\frac{x}{n})^n$$
.(8 points)

8. Let $u(x,y)=x^2-y^2$ and v(x,y)=2xy. Compute $\frac{\partial x}{\partial u}$ in term of x and y. (12 points)