淡江大學104學年度日間部轉學生招生考試試題

系別:物理系三年級

科目:應用數學

考試日期:7月26日 (星期日) 第4節

本試題共5大題,1頁

- 1. Consider the Hermitian matrix $A = \begin{pmatrix} \cos \theta & e^{-i\phi} \sin \theta \\ e^{i\phi} \sin \theta & -\cos \theta \end{pmatrix}$.
 - (a) Find the eigenvalues and the corresponding eigenvectors of A. [12%]
 - (b) Find the inverse matrix of A. [8%]
- 2. For the Cartesian vector field $\mathbf{a} = (x^2(y+z), y^2(z+x), z^2(x+y))$, evaluate respectively (i) $\nabla \cdot \mathbf{a}$, (ii) $\nabla (\nabla \cdot \mathbf{a})$, (iii) $\nabla^2 \mathbf{a}$, (iv) $\nabla \times \mathbf{a}$, and (v) $\nabla \times (\nabla \times \mathbf{a})$. [20%]
- 3. Consider the following linear differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}.$$

- (a) Find $y_c(x)$ (the complementary solution, i.e., the general solution of y'' + 2y' + y = 0). [8%]
- (b) Find the complete solution of this equation with the associated boundary conditions: y(0) = 1 and y'(0) = 0. [12%]
- 4. Consider the Fourier representation of a non-periodic function given by f(x) = x, $0 \le x < 1$. It can be made periodic with period 2 by continuing this function outside the range as either an even function

$$f_{\rm e}(x) = \begin{cases} f(x), & 0 \le x < 1, \\ f_{\rm e}(-x) = f_{\rm e}(x+2), & \text{for all } x, \end{cases}$$
 or an odd function
$$f_{\rm o}(x) = \begin{cases} f(x), & 0 \le x < 1, \\ -f_{\rm o}(-x) = f_{\rm o}(x+2), & \text{for all } x. \end{cases}$$

- (a) Find the Fourier cosine series for $f_{\rm e}(x)$. [8%]
- (b) Find the Fourier sine series for $f_o(x)$. [8%]
- (c) Which of these two series will be better for numerical evaluation? (State your reasoning based on the relevant periodic continuations or the convergence rate of the Fourier coefficients.) [4%]
- 5. The generating functions for the Chebyshev polynomials of the first kind and for the Hermite polynomials are, respectively, given by $G_1(x,h) = \frac{1-xh}{1-2xh+h^2}$ $= \sum_{n=0}^{\infty} T_n(x)h^n$ and $G_2(x,h) = e^{2xh-h^2} = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!}h^n$ for |h| < 1.
 - (a) Find the functions $T_0(x)$, $T_1(x)$, $T_2(x)$, and $T_3(x)$. [1+2+3+4%]
 - (b) Find the functions $H_0(x)$, $H_1(x)$, $H_2(x)$, and $H_3(x)$. [1+2+3+4%]