本試題雙面印刷

淡江大學 103 學年度日間部轉學生招生考試試題

系別:物理學系三年級

科目:理論力學

考試日期:7月20日(星期日) 第3節

本試題共 5 大題, 2 頁

請在5題中任選4題,每題25分

- 1. A particle moves in a planar orbit described by the position vector $\mathbf{r}=c\cos(\omega t + \alpha)\mathbf{i}+2c\sin(\omega t + \beta)\mathbf{j}$, where c, ω and α are constants, \mathbf{i} and \mathbf{j} are the unit vectors along the x- and y-directions, respectively.
 - (a) [20%] Find the velocity v, the acceleration a and the speed of the particle.
 - (b) [5%] What is the angle between **v** and **a** at time $t = (\pi/2 \alpha)/\omega$?
- 2. An undamped harmonic oscillator satisfies the equation of motion $m\frac{d^2x}{dt^2} = -kx + F(t)$, where m and k are the mass and spring constant of the oscillator, respectively.
- (a) [10%]When F(t)=0, show that $x(t)=a\sin(\omega_0 t)+b\cos(\omega_0 t)$ is the solution of the equation of motion, where a, b and ω_0 are constants, and find ω_0 (in terms of m and k).
- (b) [10%]A driving force $F(t)=F_0\sin(\omega t)$ is switched on at t=0, where F_0 and ω are constants. Find x(t) for t>0 with the initial conditions x=0 and v=0 at t=0.
- (c) [5%]Find x(t) for $\omega = \omega_0$ by taking the limit $\omega \to \omega_0$ in your result from part (b).

Hint: In part (b) you can find a particular solution of the form $x=A \sin(\omega t)$ and determine A.

- 3. An one-dimensional particle at rest is attracted toward a center by a force $F=-2mk^2/x^3$, where m is the mass of the particle, k is a constant and x is the coordinate of the particle,
 - (a) [10%] Find the potential energy resulted from the force.
 - (b) [5%] Write down the Newton equation of motion for the particle.
 - (c) [10%] Show that the time required for the particle to reach x=0 from a distance d is $\frac{d^2}{\sqrt{2}k}$.
- 4. A system is composed of n particles, with each particle's mass described by m_i , where i=1, 2, ..., n. The total mass of the system is denoted by M. Show that
 - (a) [10%] The linear momentum of the system is the same as if a single particle of mass M were located at the position of the center of mass and moving in the manner the center of mass moves.
 - (b) [10%] The time differential of the linear momentum of the system is equal to the sum of all the external forces, as long as the internal forces follow \mathbf{f}_{ij} =- \mathbf{f}_{ji} , where \mathbf{f}_{ij} is the force acted on particle i by particle j.
 - (c) [5%] The total linear momentum for a system free of external forces is constant and equal to the linear momentum of the center of mass.
 - 5. Two particles of mass m_1 and m_2 move in a plane and interact with each other by a central forces with the potential energy $U(r)=1/2 \ k \ r^2$, where k is a constant, $r=|\mathbf{r}_1-\mathbf{r}_2|$, \mathbf{r}_1 and \mathbf{r}_2 are position vectors of the two particles.
 - (a) [5%] Write down the Lagrangian of the system.
 - (b) [10%] Show that the center of mass of the system moves in a constant velocity.

淡江大學 103 學年度日間部轉學生招生考試試題

系別:物理學系三年級

科目:理論力學

33 ->

考試日期:7月20日(星期日)第3節

本試題共 5 大題, 2 頁

(c) [10%] Using Lagrangian dynamics to show that the motion of the system can be reduced to an equivalent one-body problem.