系別:物理學系三年級

科目:理論力學

本試題共 | 頁

1. The unit vectors in spherical coordinate system are e_r , e_θ and e_ϕ . In terms of the unit vectors in Cartesian coordinate system, e_x , e_y and e_z , we have $e_r = \sin\theta \cos\phi e_x + \sin\theta \sin\phi e_y + \cos\theta e_z$ and $e_\theta = \cos\theta \cos\phi e_x + \cos\theta \sin\phi e_y - \sin\theta e_z$.

(a) Find expression for e_{ϕ} in terms of e_{x} , e_{y} and e_{z} . [3%]

- (b) Find expressions for velocity vector v and acceleration vector a in spherical coordinates. [12%]
- 2 Consider the one-dimensional potential

$$U(x) = \frac{W}{d^4} (x^4 - 4d^2x^2 - d^4) e^{-(x/d)^2},$$

where w and d are positive constants.

(a) Find equilibrium points of the potential and justify which is (are) the stable equilibrium point(s). [10%]

(b) Sketch the potential. [3%]

(c) A particle of mass m moves in the force field given above, find the force acting on this particle. [5%]

(d) Is the momentum of the particle conserved? Why? [2%]

- (e) A particle with energy E=-0.5w moves in the force field given above, is the motion bounded? How many turning points for the motion if it is bounded? [7%]
- (f) Another particle with energy E=0.5w moves in the same field, is the motion bounded? Why? [3%]

Data may be useful for problem 2: $6^{1/2} \approx 2.449$, $\exp(6^{1/2}-3) \approx 0.5767$, $\exp(-6^{1/2}-3) \approx 0.0043$.

3. A one-dimensional simple harmonic oscillator consists of a particle of mass m attached to a massless Hooke spring whose force constant is k. At t=0, the particle is displaced a distance x_0 from the equilibrium position (x=0) and released from rest, and a driving force $F(t)=F_0\sin(\omega t)$ is applied to the oscillator $(F_0$ and ω are constants).

(a) Find x(t) at t>0. [15%]

- (b) Find x(t) by taking the limit $\omega \to \omega_0 = (k/m)^{1/2}$ in your result for part (a). What will occur when $\omega \to \omega_0$? [5%]
- 4. Consider a vertical plane in a constant gravitational field. Let the origin of a coordinate system be located at some point in this plane. A particle of mass m moves in the vertical plane under the influence of gravity and an additional force $f=-A r^{\alpha-1}$ directed toward the origin (r is the distance from the origin; A and $\alpha[\neq 0 \text{ or } 1]$ are constants).
- (a) Choose appropriate generalized coordinates and find Lagrangian equations of motion [15%].

(b) Is the angular momentum about the origin conserved? Explain. [5%]

5 A projectile is fired at an angle 45° with initial kinetic energy E_0 . At the top of its trajectory, the projectile explodes with additional energy E_0 into two fragments. One fragment of mass m_1 travels straight down.

(1) What is the velocity (magnitude and direction) of the second fragment of mass m_2 ? [7%]

(2) What is the velocity of the first fragment of mass m_1 ? [4%]

(3) What is the ratio of m_1/m_2 when m_1 is a maximum? [4%]

