淡江大學九十四學年度轉學生招生考試試題

系別: 物理學系三年級 科目:理 論 力 學

准带項目請打「V」

X 簡單型計算機

節次: 7 月 / 3日第 3 節

本試題共 / 頁

- 1. A stone is thrown to the sky from the origin (so that $\mathbf{r}(t=0)=0$) with the initial velocity $\mathbf{v}_0 = \hat{\mathbf{i}} v_0 \cos \theta + \hat{\mathbf{k}} v_0 \sin \theta$, where $0 \le \theta \le \pi/2$ is the elevation angle. The gravational acceleration is given by $\mathbf{g} = -g\hat{\mathbf{k}}$. ($\hat{\mathbf{i}}$ and $\hat{\mathbf{k}}$ are the unit vectors along the x- and z-directions, respectively.)
 - (a) Derive the position vector $\mathbf{r}(t)$ for the stone in terms of \mathbf{v}_0 and \mathbf{g} ? [4%]
 - (b) To ensure that the stone is always moving away from the thrower, there must be $0 \le \phi < \phi_0$. Find the value of $\sin \phi_0$. [18%]
- 2. A simple harmonic oscillator consists of a 1-kg mass attached to a spring with force constant 1 nt/cm. The mass is displaced 10 cm and released from rest (i.e. x(t=0) = 0.1 m where x denotes the displacement with respect to the equilibrium place for the spring).
 - (a) The general solution of this one-dimensional simple harmonic motion can be represented as

$$x(t) = A_1 e^{i\omega t} + A_2 e^{-i\omega t}$$

$$= B_1 \cos \omega t + B_2 \sin \omega t$$

$$= C \cos (\omega t - \delta)$$

$$= \text{Re } De^{i\omega t}.$$

Determine the values of A_1 , A_2 , B_1 , B_2 , C, D, ω , and δ . (Don't forget the units.) $[2\% \times 6 + 3\% \times 2]$

- (b) Derive the total energy of this system and the maximum speed of the mass. [10%]
- 3. The Lagrangian for a single particle in two dimensions is given by

$$\mathcal{L} = \frac{1}{2}m\left(\dot{x}^2 + \dot{y}^2\right) - U\left(x, y\right),\,$$

where U is the potential energy.

- (a) Write down the two Lagrange's equations for the coordinates x and y, respectively. [6%]
- (b) Express the Lagrangian in polar coordinates (ρ, ϕ) . [6%]
- (c) Write down the two Lagrange's equations for the coordinates ρ and ϕ , respectively. [10%]
- 4. Consider a rigid body composed of n particles of masses m_{α} ($\alpha=1,2,\ldots,n$), positioned at \mathbf{r}_{α} with respect to the center of mass of this rigid body. The motion of this body can be decomposed into two parts: a translation (of the center of mass) with the instantaneous linear velocity \mathbf{V} relative to the ground and a rotation with the instantaneous angular velocity $\boldsymbol{\omega}$ with respect to the center of mass.
 - (a) What is the velocity \mathbf{v}_{α} of the particle α relative to the center of mass (expressed in terms of \mathbf{r}_{α} , ω , and \mathbf{V}). [6%]
 - (b) Express the body's angular momentum $\mathbf{L} = \sum_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{v}_{\alpha}$ in terms of m_{α} , \mathbf{r}_{α} , $\boldsymbol{\omega}$, and \mathbf{V}). [4%]
 - (c) Express the Cartesian components of the angular momentum as $L_i = \sum_j I_{ij}\omega_j$, where the subscripts i and j designating the components in the Cartesian coordinates. Write down the 9 elements I_{ij} of the inertia tensor $\{I\}$ in terms of m_{α} and the components $(x_{\alpha}, y_{\alpha}, z_{\alpha})$ of \mathbf{r}_{α} . [18%]