淡江大學九十三學年度轉學生招生考試試題 37-1

系別:物理學系三年級

科目:理論力學

准带项目請打	「〇」否則打「× 」
Χ.	簡單型計算機

節次: 7月/4日第3節 本試題共 **/** 頁

- 1. Consider a particle of mass m constrained to move on the surface of a sphere of radius R subject to an applied force $\mathbf{F}(\theta,\phi) = F_{\theta}(\theta,\phi) \mathbf{e}_{\theta} + F_{\phi}(\theta,\phi) \mathbf{e}_{\phi}$. Here, we use the spherical coordinate systems (r,θ,ϕ) with the center of the sphere as the origin. Write down the equations of motion along the θ -direction and the ϕ -direction, respectively. [20%]
- 2. The equation of motion of a damped oscillator can be expressed as

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0.$$

Given the initial condition at t=0 by $x(0)=x_0$ and $\dot{x}(0)=\dot{x}_0$, determine the explicit solutions of x(t) in the cases of underdamping $(\omega_0^2>\gamma^2)$, critical damping $(\omega_0^2=\gamma^2)$, and overdamping $(\omega_0^2<\gamma^2)$, respectively. (30%)

- 3. Consider a rigid body composed of n particles of masses m_{α} ($\alpha=1,2,\ldots,n$), positioned at r_{α} with respect to the center of mass of this rigid body. The motion of this body can be decomposed into two parts: a translation (of the center of mass) with the instantaneous linear velocity V relative to the ground and a rotation with the instantaneous angular velocity ω with respect to the center of mass. What is the velocity v_{α} of the particle α relative to the ground (expressed in terms of r_{α} , ω , and V). [6%] Show that the total kinetic energy T of this rigid body can also be divided into two parts: a translational part T_{trans} (independent of ω) and a rotational part T_{rot} (independent of V). [10%] The rotational part can be expressed as $T_{\text{rot}} = \frac{1}{2} \sum_{i,j=1}^{3} I_{i,j} \omega_i \omega_j$, where the subscripts i and j designating the components in the rectangular coordinates. Write down the 9 elements I_{ij} of the inertia tensor $\{I\}$ in terms of m_{α} and components of r_{α} . [10%]
- 4. Consider the double pulley system shown below. Assume the pulleys are massless and both strings across the pulleys are of fixed length $l + \pi R$, where R is the radius of the pulleys. Use the method of Lagrange undetermined multiplier to find the tensions in both strings. [24%]

