淡江大學九十二學年度轉學生招生考試試題

系別:物理學系三年級

科目:電磁學

准带项目請打	「「〇」否則打「× 」
X	簡單型計算機

本試題共 一 頁

- 1. Consider an electrostatic situation in which a charge Q is uniformly distributed over a sphere of radius R. Let the electric potential at infinity be zero.
 - (a) Find the electric field (\bar{E}) and potential (V) as a function of the radial distance (r) from the center of the sphere.
 - (b) Calculate the electrostatic energy of the system. (20%)
- 2. Assume that a static charge distribution (ρ) produces an electric potential $V(\vec{r}) = A \frac{e^{-\alpha r}}{r}$, where A and α are positive constants, \vec{r} is the position vector, $r = |\vec{r}|$. Now, it is given that $\nabla^2(1/r) = -4\pi\delta(\vec{r})$. Find the electric field $\vec{E}(\vec{r})$, charge density $\rho(\vec{r})$, and the total charge Q. (20%)
- 3. Justify that the vector potential of a uniform magnetic field \vec{B} may be expressed as $\vec{A} = \vec{B} \times \vec{r} / 2$, where \vec{r} is the position vector, and that $\nabla \cdot \vec{A} = 0$. (10%)
- 4. Assume that a long solenoid of radius R with n turns of thin wires per unit length is carrying a steady current I, and its axis of symmetry is along the z-direction.
 - (a) Justify that the magnetic field (whenever nonzero) is in the z-direction.
 - (b) Show that $\oint \vec{A} \cdot d\vec{l} = \Phi_B$ (the magnetic flux through a surface enclosed by a closed path C),

where \vec{A} is the vector potential.

- (c) Find the magnetic field intensity (\vec{H}) and vector potential throughout the space. (20%)
- 5. It is well known that the basic laws of classical electromagnetic phenomena are governed by the Maxwell's equations: $\nabla \cdot \vec{D} = \rho_f$, $\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$, $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$, $\nabla \cdot \vec{B} = 0$, where \vec{E} , \vec{D} , \vec{B} , \vec{H} , ρ_f , and \vec{J}_f are the electric field, electric displacement, magnetic field, magnetic field intensity, free charge density, and free current density, respectively.
- (a) Write down the corresponding integral form for each of the four Maxwell's equations, and specify the physical meaning for each of them.
- (b) Show that the free charge density and free current density satisfy the continuity quation: $\nabla \cdot \bar{J}_f + \frac{\partial \rho_f}{\partial t} = 0 \quad \text{(Hint: Two of the Maxwell equations may be useful)}.$
- (c) Show that the tangential component of the electric field must be continuous across any boundary surface. (30 %)