淡江大學九十二學年度轉學生招生考試試題

系別:物理學系三年級

科目:應用數學

准帶項目請打	·「〇」否則打「x 」
X	簡單型計算機

本試題共 / 頁

- 1. Consider the conic $5x^2 4xy + 2y^2 = 30$, find the principal axes of the conic and express the conic in the principal axes. (10 points)
- 2. Suppose that displacement as a function of time for a moying particle is $\vec{r}(t) = t^2\hat{i} 2t\hat{j} + (t^2 + 2t)\hat{k}$, find the equations of the line tangent to the curve described by the particle and the plane normal to this curve at (4, -4, 8). (15 points)
- 3. Use the method of contour integration to evaluate the integral $I = \int_{-\infty}^{\infty} \frac{\sin^3 x}{x^3} dx$. (15 points)
- 4. Solve the following differential equation

(15 points)

$$x^2y'' - 2xy' + 2y = x \ln x$$
.

- 5. Given $f(x) = \sin x$, $0 < x < \pi$, expand f(x) in Fourier cosine series. (15 points)
- 6. Given $\vec{A} = z\hat{i} + x\hat{j} 3y^2z\hat{k}$, find $\iint_S \vec{A} \cdot \hat{n}d\sigma = ?$ Where S is the surface bounded by z = 0, z = 5, and $x^2 + y^2 = 16$ in the 1st quadrant. (15 points)
- 7. Solve the following partial differential equation with given boundary conditions. (15 points)

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + x, 0 \le x \le 1, t > 0.$$

$$B.C.u(0, t) = u(1, t) = 0,$$

$$I.C.u(x, 0) = \frac{x^3}{6}, \frac{\partial u(x, 0)}{\partial t} = 0$$