本試題雙面印製

淡江大學九十學年度日間部轉學生招生考試試題

系別:化學系三年級

科目:普通化學

准帶項目請打「〇」否則打「×						
計算機	字典					
0	V					

本試題共 2 頁

普通化學 ============	轉學生 招生 ===================================	考试 :=======	P. 1/2	2001年7月 ========
第一部份:選擇題 (單選,每題 4 分,共	20分)		
 The electron config A. [Ar]4s²4d⁴ E. [Ar]3d⁹ 	uration of a copper ato B. [Ar]4s ² 4p ⁶ 3d ³	m is: C. [Ar]	4s ² 3d ⁷ D. [Aı]4s ¹ 3d ¹⁰
I ₄ , the 3 rd and 4 th io	display an unusually l nization energies? C. Al D. Si I		n ionization energy	values between I ₃ and
3. The F-Cl-F bond an A. 90° only B. E. 90° and 180°	ngles in ClF ₃ are: 109.5° only	0° only	D. 90° and 109.	50
A. the concentratB. the fraction ofC. the activation	As the temperature institution of reactants increased collisions with total kinenergy decreases. The equency increases increases increases.	crease: es.		rate of reaction. The
A. bond strength B. electron withd	ch one of the following rawing effects character of H-X bond			
第二部份:填充題 (每題3分,共30分)	·	
1. In the coordination c coordination number	ompound [$Cr(NH_3)_2(en)$) and oxidation in			
2. When an aqueous so gas is	lution of AgNO ₃ is ele	ctrolyzed, a	gas is observed to	form at the anode. The
each 1 M, the cell po	have been proposed to stact with CuSO ₄ (aq) at tential will be	nd Pb(NO ₃) V. Eo = -0	₂ (aq), respectively.	tup with copper and If the Pb ²⁺ and Cu ²⁺ are

淡江大學九十學年度日間部轉學生招生考試試題

系別:化學系三年級

科目:普通化學

准带项目請打「〇」否則打「x 」				
計算機	字典			
	X			

本试题共 之 頁

普通化學 ==========	轉學生招生考試 ====================================		
	estion. If sulfuric acid is added to The cell potential will (de		
5. The molecules of difference same	erent samples of an ideal gas have	the same average k	inetic energies at the
6. The hybridization of t	he central atom in ClO ₃ is	٠.	
	tion $A + B \rightarrow C$, a plot of [A] ver This is aorder reaction.	sus time is found to	give a straight line
	orium with liquid water at 273 K. and G(l), the free energy per mole		
	the following reaction is $D_4^{-} + 6H^{+} \rightarrow 2Mn^{2+} + 8H_2O + 5O$		
10. For a conjugate acid- equation:	base pair, the relationship betwee	n its K _a and K _b can	be described by an
第三部份:計算問答題	(共50分)		
1. Pure carbon was burne CO (16.0 mol%), and C mixture for every mole	ed in an excess of oxygen. The gas O_2 (12.0 mol%). How many moles of carbon?	seous products were s of O ₂ were present	CO ₂ (72.0 mol%), in the initial reaction (10%)
2. Calculate the solubility solution of AgNO ₃ .	of solid silver chromate (Ag ₂ Cro	O_4 , $K_{sp} = 9.0 \times 10^{-12}$) in a 0.100 M (10%)
3. A certain first-order re-	action has a half-life of 20.0 min.		
a. Calculate the rate co			(10%)
b. How much time is re	equired for this reaction to be 75%	6 complete?	(5%)
4. a. Using the relationshi show that for a systematical	em at equilibrium the equilibrium		nt for an endothermic
	mperature is increased.		(5%)
critical temperature	on to estimate the value of ΔG° for 374 °C. ($K_w = 1.00 \times 10^{-14}$ at 25	or the autoionization or ASo for the reco	of water at its
$JK^{-1}mol^{-1}$; R = 8.31		o, do foi die feact	(10 0 4)