本試題雙面印刷

淡江大學99學年度轉學生招生考試試題

系別:統計學系三年級 科目:統 計 學

本試題共 6 大題, 2 頁

- 1) (a) What is meant by the n random variables $X_1, X_2, ..., X_n$ is a random sample (of size n)? (4%) Let $X_1, X_2, ..., X_n$ be a random sample of size n. Using it, define the following: (18%)
 - (b) Sample mean.
 - (c) Sample median.
 - (d) Sample mode.
 - (e) Sample variance.
 - (f) Sample standard deviation.
 - (g) Sample 100 p% .percentile (0 .
- 2) Let Z be a standard normal random variable.
 - (a) What is the probability density function of Z? Draw a picture for it. Is the picture symmetric about the line z = 0? Why? (6%)
 - (b) Let F_Z be the distribution function of Z. That is, $F_Z(z) = P(Z \le z)$, for any real number z. Express the probability $P(-a < Z \le a)$ in terms of F_Z . (3%)
 - (c) If $F_z(-a) = 0.123$, find $1 F_z(a)$. (3%)
 - (d) If $F_Z(a) = 0.876$, find $F_Z(-a)$ (3%)
- 3) The probability density functions of the independent random variables X and Y are given by

$$f_X(x) = \begin{cases} 0.2, & \text{if } x = 0 \\ 0.8, & \text{if } x = 1 \\ 0, & \text{otherwise,} \end{cases} \qquad f_Y(y) = \begin{cases} 0.2, & \text{if } y = 1 \\ 0.4, & \text{if } y = 2, 3 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the joint probability density function of X and Y. (6%)
- (b) Find Cov(U,V), the covariance of U=2X+1 and V=Y+2. (4%)
- 4) Let $X_1, X_2, ..., X_n$ be a random sample of size n from a population with mean μ and variance $\sigma^2 > 0$.
 - (a) Give an unbiased estimator of μ . (3%)
 - (b) Give an unbiased estimator of σ^2 , if the population mean μ is unknown. (4%)
 - (c) Suppose that the population is a normal population with known population variance σ^2 , Find a 95% confidence interval estimator of the population mean μ . (6%) (For reference, $z_{0.1} = 1.281$, $z_{0.05} = 1.645$, $z_{0.025} = 1.960$, , $z_{0.005} = 2.576$)

背面尚有試題

淡江大學99學年度轉學生招生考試試題

系別:統計學系三年級 科目:統 計 學

本試題共 6 大題, 2 頁

- 5) In testing the null hypothesis H_0 against the alternative hypothesis H_1 by using a test. (15%)
- (a) What is meant by the critical region for the test?
- (b) What is meant by the level of significance of the test?
- (c) When a type I error is committed?
- (d) When a type II error is committed?
- (e) What is the power of this test?
- 6) In a simple linear regression model $Y = \alpha + \beta x + \varepsilon$, the responses Y_i corresponding to the input values x_i , i = 1, 2, ..., n, are observed and used to estimate the parameters α and β . Assume that the responses variables Y_i , i = 1, 2, ..., n, are independent.
 - (a) What are the least-square estimators $\hat{\alpha}$ and $\hat{\beta}$ of α and β , respectively?. (8%)
 - (b) What is the estimated regression line? (3%)
 - (c) Let the error random variable ε be normal distributed with mean 0 and variance σ^2 .
 - (i) What is the distribution of the response variable Y? (4%)
 - (ii) What are the distributions of $\frac{\sum_{i=1}^{n} (Y_i \alpha \beta x_i)^2}{\sigma^2}$ and $\frac{\sum_{i=1}^{n} (Y_i \hat{\alpha} \hat{\beta} x_i)^2}{\sigma^2}$, respectively? (6%)
 - (iii) Find the unbiased estimator of σ^2 . (4%)