本試題雙面印製

淡江大學 97 學年度轉學生招生考試試題

系別:統計學系三年級

科目:機率與微積分

可	否使用	月計算	幾
चि		否	
计相比	F &	_L ##i	

(請附計算和推導過程,否則不予計分,背面仍有試題)

- 1. Evaluate the following limits:
 - (a) $\lim_{h\to 0} \frac{(1+h)^{10}-1}{t_1}$ (6%)
- (b) $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} + \frac{n}{n^2} \right)$ (10%)
- 2. Evaluate the following integral (indefinite and definite)
 - (a) $\int \frac{4x^3}{1-x^4} dx$
- (6%) (b) $\int_0^{\pi} x \sin x \, dx$ (7%)
- 3. Let

1.1

$$f(x) = \begin{cases} \frac{4x - 2\sin 2x}{4x^3} & x \neq 0\\ \alpha & x = 0 \end{cases}$$
 (10%)

Find the value of α such that the function f is everywhere continuous

- 4. Assume that two variables X and Y are randomly chosen from Uniform(-1,1)and Uniform(0,1), respectively. (i.e. $X \sim Uniform(-1,1)$ and $Y \sim Uniform(0,1)$ are independent). Find the probability that the roots of the equation h(t) = 0 are real, where $h(t) = t^2 + 2Xt + Y$ (亦即 h 之根為實數的機率為何?) (8%)
- 5. Let X be a **positive** continuous random variable with probability density function (p.d.f.) f and cumulative distribution function $F(x) = \int_0^x f(t)dt$. Let h be defined as (10%)

$$h(x) = \frac{f(x)}{1 - F(x)} = \lambda, \ \forall \ x > 0,$$

where λ is a positive constant. Prove that the p.d.f. f has the form $f(x) = \lambda e^{-\lambda x}$, x > 0. (Hint: integrate h with respective to x and note that F' = f).

6. Let Y be a continuous random variable with p.d.f. $f_Y(y) = ky^2 + 6y$, $y \in [0,1]$. Calculate (a) the value of k (b) the median of Y (c) the mode of Y (5%, 5%, 5%)

淡江大學 97 學年度轉學生招生考試試題

系別:統計學系三年級

科目:機率與微積分

- 7. Suppose that A and B are events such that P(A) = 1/3, P(B) = 1/5 and P(A|B) + P(B|A) = 2/3. Evaluate $P(A^c \cap B^c)$ (8%)
- 8. Suppose that the joint p.d.f. of two random variables X and Y

$$f(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}, -\infty < x < \infty, -\infty < y < \infty.$$

- (a) Are X and Y independent? Briefly Explain. (5%)
- (b) Find $P(X^2 < 1/4 \text{ and } Y^2 > 1)$. (8%)
- (c) Derive the p.d.f of $W = X^2$ (9%)

 $(\Phi(1/2) = 0.6915, \quad \Phi(1) = 0.8413, \quad \Phi(2) = 0.9772, \text{ where } \Phi(x) = \int_{-\infty}^{x} e^{-t^2/2} / \sqrt{2\pi} \ dt)$