系別:商管組三年級

科目:微 積

- 1. Find the following integrals or limits:(每小題 6 points)

 - (a) $\int x^4 \ln x \, dx$. (b) $\int_0^\infty \frac{x}{(x^2+1)^2} dx$. (c) $\int \frac{e^x}{e^x+1} dx$.
 - (d) $\int_{0.0}^{2} \int_{0}^{1} (3x^2 + 6xy^2) \, dy dx.$ (e) $\lim_{x \to 0} \frac{\sqrt{1+x} 1}{x}$.
- 2. Find $\frac{dy}{dx}$ or $\frac{\partial g}{\partial y}$ (每小題 6 points) if
- (a) $y = e^{3x}$ (b) $y = \frac{\ln x}{x^5}$ (c) $y = \int_0^{x^3} 1/(1+\sqrt{t})dt$, x > 0 (d) $g(x, y) = \frac{xy}{x^2+y^2}$.
- 3. Find the maximum and minimum values for the function $f(x) = x^3 - 3x^2 - 24x + 5$ for x on the interval [-3, 8]. (10points)
- 4. Find the relative extreme values of $f(x, y) = y^3 + x^3 4xy$. (10 points)
- 5. Find the Taylor series for $\int_{0}^{x} \frac{1-e^{t}}{t} dt$ at x=0. (10points).
- 6. A manufacturer of digital clocks determines that he can sell x clocks per week at price p where x and p are related by the equation

$$x^2 + 3xp + p^2 = 4400.$$

This equation determines demand as a function of price, x=Q(p), near the point $(p_0, x_0) = (40, 20)$.

- (a) If price is increasing at the rate of 50% per week how fast is demand changing when p=\$40? (8points)
- (b) Find $\frac{dx}{dp}$ at the point (p_0, x_0) =(40, 20). (8points)