淡江大學 95 學年度轉學生招生考試試題

系別:電機工程學系三年級

科目:電子學

5 - 1

准带	項	目	請	打	Γ	۷ ,	
V		M	単	型	計	- 算	機

本試題共 2 頁一1

1. (20%) For an inverting amplifier, as shown in Fig. 1, with open loop gain A=100, $R_1=2k\Omega$, $R_2=1k\Omega$, and nominal gain $-R_2/R_1$, find the close loop gain in reality and the resulting gain error.

[hint: gain error = (real gain - nominal gain)/nominal gain]

Fig. 1

2. (20%) For the devices in the circuit of Fig. 2, $V_{\rm in} = 1 \text{V}$, $\mu_{\rm n} C_{\rm ox} = 50 \mu \text{A/V}^2$, L=1 μ m, and W=5 μ m. Neglect the channel length modulation and body effect, find V_2 and I_1 .

Fig. 2

3. (20%) As shown in Fig. 3, the BJT has a common-emitter current gain $\beta = 100$, $V_{BE} = 0.7$ V, and the thermal voltage $V_T = kT/q = 25$ mV. Find the dc collect current and dc voltage V_C , and small-signal voltage gain V_o/V_i . [Hint: In the small signal analysis, the base current can be ignored.]

◆注意骨面尚有試題▶

淡江大學 95 學年度轉學生招生考試試題

51-2

系別:電機工程學系三年級

科目:電 子 學

4. (20%) The MOS version of the Wilson mirror is shown in Fig. 4. Show that the output resistance R_o of this circuit can be approximated to $g_{m3}r_{o3}r_{o2}$, where g_{m3} is the transconductance of transistor Q_3 , r_{o3} and r_{o3} are the finite resistances between drain and source of transistor Q_3 and Q_2 , respectively.

Fig. 4

5. (20%) The circuit of Fig. 5 utilizes two MOSFETs whose bias details are not shown and a 50Ω coaxial cable. Transistor Q_1 operates as a CS amplifier and Q_2 as a CG amplifier. For proper operation, transistor Q_2 is required to present a 50Ω resistance to the cable. That is, the input resistance of Q_2 is 50Ω . Assume the transistors are well biased here. What must g_{m2} be? What value of R_D is required to provide 1V pulses at the drain of Q_2 ?

