系別:機械與機電工程學系三年級

科目:工程力學(含靜力學、動力學、材料力學)

	可否使用計算機						
	可	V	否				
4	、試題;	# 6	大題	,	\vec{P}		

1. The object in Fig. 1 has a built-in support and is subjected to two forces and a couple. What are the reactions at the support? (15%)

Fig. 1

3. The two crates in Fig. 3 are released from rest. Their masses are $m_A = 40 \text{ kg}$ and $m_B = 30 \text{ kg}$, and the kinetic coefficient of friction between crate A and the inclined surface is $\mu_k = 0.15$. What is the magnitude of their velocity when they have moved 400 mm? (15%)

Fig. 3

2. The truss in Fig. 2 supports a 100 kN load. The horizontal members are each 1 m in length. Determine the axial force in member CJ, and state whether it is in tension or compression. (15%)

4. Bar AB in Fig. 4 rotates with a clockwise angular velocity of 10 rad/s. Determine the angular velocity of bar *BC* and the velocity of point *C*. (15%)

Fig. 4

淡江大學 97 學年度轉學生招生考試試題

系別:機械與機電工程學系三年級
 科目:工程力學(含靜力學、動力學、材料力學)

ग	可否使用計算機					
可	V	否				
本試題	† 6	大題	· P	□⊋頁		

5. A hollow, circular, steel column $(E = 210 \,\text{GPa})$ is subjected to a compressive load P, as shown in Fig. 5. The column has length $L = 2.5 \,\text{m}$ and outside diameter $d = 200 \,\text{mm}$. The load $P = 500 \,\text{kN}$.

If the allowable compressive stress is 55 MPa and the allowable shortening of the column is 0.60 mm, what is the required wall thickness t_{\min} ? (20%)

Fig. 5

6. Determine the equation of the deflection curve for a cantilever beam AB subjected to a uniform load of intensity q (Fig. 6a). Also, determine the angle of rotation θ_B and the deflection δ_B at the free end (Fig. 6b). (Note: The beam has length L and constant flexural rigidity EI.) (20%)

