本試題雙面印製

淡江大學九十一學年度日間部轉學生招生考試試題

系別:機電工程學系三年級 科目:熱 力 學

本試題共 2 頁

- 1. Please give definitions of the following: (30%)
 - (1) Adiabatic process
 - (2) Coefficient of performance
 - (3) Clapeyron equation
 - (4) Critical point
 - (5) Principle of increase of entropy
 - (6) Throttling process
 - (7) Ideal gas equation of state
 - (8) Isobaric process
 - (9) Polytropic process
 - (10) Second law of thermodynamics
- 2. Consider the simple steam power plant, as shown in Figure. h_1 = 3023.5 kJ/kg, h_2 = 3002.5 kJ/kg, h_3 = 2361.8 kJ/kg, h_4 =188.5 kJ/kg, Pump work = 4 kJ/kg. Determine the following quantities per kilogram flowing through the unit. (20%)
 - (1) Heat transfer in line between boiler and turbine.
 - (2) Turbine work.
 - (3) Heat transfer in condenser.
 - (4) Heat transfer in boiler.

▼注意背面尚有試題▶

淡江大學九十一學年度日間部轉學生招生考試試題

系別:機電工程學系三年級 科目:熱 力 學

准	带填上	請打	۲Q.	,否	則打	۲×	١
		1	.) jj-	機			
			0	- -			

- 3. Calculate the absolute pressure for a system, given a gauge pressure of 1.5 Mpa and a barometric pressure (atmospheric pressure) of 104 kpa. (10%)
- 4. Nitrogen is compressed in a reversible process in a cylinder from 100 kPa, 20°C, to 500 kPa. During the compression process the relation between pressure and volume is $PV^{1,3}$ = constant. Calculate the work and heat transfer per kilogram, and show this process on P- ν and T-s diagrams. (R = 0.2968 kJ/ kg K) (15%)
- 5. Please plot and explain the P-v and T-s diagram for the air -standard Otto cycle. (10%)
- 6. Temperature inside a Carnot refrigerator is maintained at 5°C by rejecting heat to the surroundings at an ambient temperature of 27°C. The inside temperature is now decreased to -13°C, the ambient temperature remaining constant at 27°C. Determine the percent increase in work input for the same quantity of heat QL removed. (15%) Hint: calculate $\frac{W_2 - W_1}{W} \times 100$